Table 1. Comparison of proposed method with average, weiner, median filters using different evalualtion measures.

Original image vs noise introduced image Orignal image vs output images of average, weiner and median filters Original image vs output image of proposed method
Image (resolution) PSNR F -measure NRM Filter PSNR F- measure NRM PSNR F-measure NRM
Image no.1 (1822×1590) 19.14 dB 94.5251% 4.84555 Average 18.36 dB 81.473% 7.15771 22.77 dB 82.3644% 1.09061
Weiner 14.89 dB 32.154 % 4.31239
Median 18.26 dB 79.5219% 6.40972
Image no.2 (802×1537) 18.64 dB 92.3455% 6.03096 Average 12.18 dB 73.7318% 20.787 22.46 dB 96.6344% 1.40903
Weiner 11.46 dB 29.1663% 6.94014
Median 18.62 dB 92.0617% 5.01784
Image no.3 (1633×872) 19.43 dB 92.4561% 6.21288 Average 19.12 dB 92.049% 7.0705 22.79 dB 96.2263% 0.792766
Weiner 14.49 dB 67.4895% 3.00505
Median 20.27 dB 93.5766% 4.14711
Image no.4 (1784×2703) 23.02 dB 95.9232% 2.49492 Average 19.53 dB 91.3193% 6.77008 24.01 dB 96. 6342% 0.37392
Weiner 14.13 dB 53.6225% 2.56231
Median 20.30 dB 92.2412% 3.75177
Image no.5 (1497×2338) 22.57 dB 96.7135% 2.48476 Average 19.13 dB 92.7348% 6.27126 24.64 dB 97.7949% 0.483374
Weiner 12.72 dB 49.4689% 3.42444
Median 21.48 dB 95.5001% 2.39183