
Journal of Multimedia Information System VOL. 8, NO. 1, March 2021 (pp. 57-60): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.1.57

57

Abstract: Industry 4.0 is continuous automation by applying

the latest smart technologies to traditional manufacturing

industries. It means that large-scale M2M (Machine-to-Machine)

communication and IoT (Internet of Things) technologies are well

integrated to build efficient production systems by analyzing and

diagnosing various issues without human intervention. Edge

computing is widely used for M2M services that handle real-time

interactions between devices at industrial machinery tool sites.

Here, secure data transmission is required while interacting. Thus,

this paper focused on a method of creating and maintaining secret

key and security tag used for message authentication between end-

devices and edge-device.

 Key Words: Edge computing, Security tag, Secret key, IIoT.

I. INTRODUCTION

 SMS (Smart Manufacturing System) is an application

field of Industry 4.0 [1]. It is the digitization of all

technologies related to manufacturing systems by providing

inter-connectivity between physical entities (e.g. sensors,

robots, machinery production tools) and cyber entities (e.g.

network technology, big data technology, security

technology, application technology). Additionally, this

integrates IoT (Internet of Things) and M2M (Machine-to-

Machine) technologies. As a result, it contributes to

improving productivity through flexible manufacturing,

real-time manufacturing control and monitoring, rapid

response to market changes, application of smart sensor and

robot technology, and big data analysis.

 The IoT technology is the most important technology

required to build such SMS. Especially, IIoT (Industrial

Internet of Things) combines all physical and virtual

entities to inter-operate through edge computing or cloud

computing based on Internet [2]. Recently, cloud

computing in the cyber domain is widely used to achieve

SMS by controlling and managing the vast amounts of data

generated from various IIoT end-devices in the physical

domain, but it is not easy to accomplish the goal in most

real-time cases.

On the other hand, edge computing can respond in real-

time with a computing structure that helps in

communicating, processing, storing, and operating data

produced in the physical domain where end-devices are

installed. That is, most of the functions are performed in the

location where the end-devices are closed to. Thus, edge

computing has the advantages of fast response time, real-

time data analysis, non-essentiality of additional wide area

network connections, and improved data security. Fig.1

shows a conceptual IIoT framework based on edge

computing and cloud computing.

Fig. 1. IIoT framework based on edge computing and cloud

computing.

Brief Paper:

Secret Key and Tag Generation for IIoT Systems

Based on Edge Computing

Giheon Koh1, Heungsik Yu2, Sungun Kim3*

Manuscript received February 25, 2021; Revised March 26, 2021; Accepted March 25, 2021. (ID No. JMIS-21M-03-007)

Corresponding Author (*): Sungun Kim, 45 Yongso-ro, Nam-Gu, Busan, Korea, +82-51-629-6235, kimsu@pknu.ac.kr.
1UNOMIC, Busan, South Korea, kion.koh@unomic.com
2UNOMIC, Busan, South Korea, paul.yu@unomic.com
3Department of Information and Communications Engineering, Pukyong National University, Busan, Korea, kimsu@pknu.ac.kr

mailto:kimsu@pknu.ac.kr

Secret Key and Tag Generation for IIoT Systems Based on Edge Computing

58

 In Fig. 1, the data generated from the end-devices must be

delivered to the edge-device, or cloud system, in order to be

processed and controlled. There are the risks of content

leakage, forgery, and alteration due to hacking that could

occur through other networks while transmitting data (here,

content leakage indicates illegally used by an unauthorized

third party, alteration indicates a form of content change,

and forgery indicates when false data is intervened). In

general, encryption technology could be used in response to

content leakage. Security tag, as message authentication, is

also useful to face tampering or forgery. In cloud

computing, we need both technologies in a network

environment. However, for edge computing in a short-

range network environment, a security tag is sufficient to

just cope with tampering and forgery. Here, the main issues

are about how to create keys and tags with sufficient

security capabilities with a low computational cost.

 In this paper, we focused on the methodology to create

security tags, generate and maintain security keys used for

creating security tags. Furtherly, Chapter 2 describes

related works, Chapter 3 explains how to create security

tags and generate and maintain security keys, and Chapter

4 concludes our works.

II. RELATED WORKS

 The data generated by IIoT end-devices is vast and it could

be used for controlling and monitoring edge-devices. So

that, because such data plays an important role, they must

be protected from various threats.

 As a block cipher, AES (Advanced Encryption Standard)

is applied to data encryption and message authentication [3].

LEA (Lightweight Encryption Algorithm) is another block

cipher with a 128-bit block [4]. The options for the key size

are 128-bits, 192-bits, and 256-bits. It only consists of the

ARX (modular Addition, bitwise Rotation, and bitwise

XOR) operations for an array of four 32-bit words. LEA

gets the resistance against the attacks for block ciphers and

is proved by providing better speed and size on many

platforms than AES [5]. For this reason, we chose the LEA

approach to create a security tag for message authentication.

Esfahani et al. proposed a lightweight authentication

mechanism using hash and XOR (eXclusive OR)

operations for M2M communications in an IIoT

environment [6]. M. Shin and S. Kim proposed a security

mechanism for IoT services based on cloud and fog

computing [7]. It is a variation of the WPA-2 (Wi-Fi

Protected Access 2) method based on AES, and it is not

smooth to change the key periodically which to enhance

security. Even though the most of existing M2M

communication protocols provide security mechanisms in

an autonomous way, but it results in a high computational

cost.

III. PROPOSED MECHANISM

3.1. Security Tag Generation

 The process for security tag generation for the end-

devices and edge-device explained in Fig. 2 is as follows.

First, the data generated by the end-devices is divided by a

multiple of 16-byte block. If data is not dividable with the

multiple of 16-byte block, the final block is filled with zero-

padding. Two inputs are required to apply the S-LEA

(Simplified-LEA) method to generate the security tag. That

is, they are the input data of multiple of 16-byte block and

the 4-byte shared common secret key K generated by the

end-devices and edge-device.

Fig. 2. Security tag generation for an edge security mechanism.

The procedure of security tag generation consists of n

rounds for 32-bit key K. For n rounds, it encrypts a 128-bit

data block Di = (Di [0], Di [1], Di [2], Di [3]) to create a 128-

bit security tag block T = (T[0], T[1], T[2], T[3]). Finally,

the security tag T is produced from the obtained Dn after

round iterations as shown in Fig. 3:

T [0] = Dn[0], T [1] = Dn[1], T [2] = Dn[2], and T [3] = Dn[3].

Fig. 3. Simplified LEA method for security tag generation.

Journal of Multimedia Information System VOL. 8, NO. 1, March 2021 (pp. 57-60): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.1.57

59

Here, the notation x⨁y is defined as XOR of bit strings x

and y with the same length. And x⊞y is defined as addition

modulo 232 of 32-bit string x and y. Security was reinforced

by using the result of the preceding S-LEA output block as

input to the next step.

To shorten the calculation process while enhancing

security, separate round keys are not used. Nevertheless,

security capabilities could be supplemented by replacing

the current key with a new key based on the period of time.

Here, if the size of the input data block is small and if the

speed has more weighted, the size of the data block should

be modified into 4-byte or 8-byte.

3.2. Key Generation and Maintenance

 To generate the secure key which is shared between the

end-devices and edge-device, the Diffie-Hillman key

generation method was adapted [8]. First, the end-devices

and edge-device share two constants such as x (shared

secret constant (bottom)) and y (shared secret constant

(modulus)), and they have individual secret constants such

as a (end-device's private secret constant) and b (edge-

device's private secret constant). When generating a secret

key initially, we use the shared secret constant (x, y) and

private secret constant (a, b) owned. Then, the secret key

constants (Ka: end-device secret key constant, Kb: edge-

device secret key constant) are calculated through Equation

(1).

 Ka = xa%y, Kb =xb%y. (1)

After exchanging the secret key constants, the first byte of

the secret key is computed by equation (2). In this process,

even if the end-device and edge-device use different private

secret constants (a, b), but they generate the same value by

the principle of discrete algebra.

key[0] = Kb
a%y (End-device) = Ka

b%y (Edge-device)

(2)

The second and third bytes are calculated as in Equation (3)

and (4).

 key[1]=((Ka+Kb)×key[0])%255, (3)

 key[2]=((Ka+Kb)×key[1])%255. (4)

From the third to nth bytes are obtained as in Equation (5).

key[n] = ((key [n-3] + key [n-2]) ×key[n-1]) %255.

(5)

Here, since key[n] is newly obtained using the bytes of the

previous two steps, safer key generation is guaranteed. As

a result, the 4-byte block shared key K is combined from

the finally obtained key in the following way:

K=[K[0] ← key[0]] ∥ [K[1] ← key[1]] ∥ [K[2]←

 key[2]] ∥[K[3] ← key[3]].

(6)

We can also decrease or increase the size of the key to 2

bytes or 8 bytes. In addition, a new shared secret key is

regenerated at regular intervals using a timer. If a timeout

occurs while using the current key for the desired timer

value, the value of the shared secret constant (x, y) is

updated with the first and second bytes of the current key K

being used, as shown in Equation (7):

 x = K[0], y = K[1]. (7)

Therefore, a new 32-bit block shared key K is generated by

applying the result of Equation (7) to Equations (1), (2), (3),

(4), (5), and (6).

3.3. Proposed Protocol

Fig. 4 and 5 explain sequence charts of the proposed

protocol which are applied to create and maintain the secret

key and security tag. Fig. 4 shows the case of normal

transmission operation without being changed the contents

by hackers.

Fig. 4. Protocol in case of normal operation without data

tampering or forgery.

Secret Key and Tag Generation for IIoT Systems Based on Edge Computing

60

Fig. 5. Protocol in case of abnormal operation with data tampering

or forgery.

Figure 5 shows a process in which the contents of

transmitted data are changed by hackers or operated

abnormally due to forgery or tampering, and so on.

Ultimately, the proposed protocol is applied to ensure safe

data transmission between the end-devices and edge-device.

IV. CONCLUSIONS

According to the works of D. Hong and J. Lee et Al. [4],

LEA shows better performance. In our study, through

implementing and verifying the proposed protocol for the

end-devices and edge-device, it was confirmed that the

same secret key was correctly generated, and the integrity

of data was assured. And we verified that periodic key

replacement and the shared secret constant update based on

a timer are performed correctly. By doing this, the

significant advantages are given in shortening the time to

generate tags and enhancing the security capability by

changing key periodically. We also experienced that there

is no problem in using it in our test-environment based on

an edge gateway system. Currently, efforts are being made

to apply it in a real machine manufacturing system.

Acknowledgment

This research work was supported by the Research

Grant of Pukyong National University (2019).

REFERENCES

[1] Kiwook Jung, Boonserm Kulvatunyou, Sangsu Choi,

and Michael P. Brundage, “An Overview of a Smart

Manufacturing System Readiness Assessment,”

presented at the IFIP Advanced Information

Technology, vol. 488, pp. 705-712, Mar. 2017.

[2] David S. Linthicum, “Connecting Fog and Cloud

Computing,” IEEE Cloud Computing, vol. 4, no. 2, pp.

18-20, 2017.

[3] ADVANCED ENCRYPTION STANDARD (AES),

Federal Information Processing Standards Publication

197, November 26, 2001.

[4] D. Hong and J. Lee, Dong-Chan Kim, Daesung Kwon,

K. Ryu, D. Lee, “LEA: A 128-Bit Block Cipher for Fast

Encryption on Common Processors,” presented at the

14th International Workshop on Information Security

Applications, Springer, vol. 8267, pp. 3-27, Aug.

2013.

[5] S. Lim, J. Lee, D. Han, “Improved Differential Fault

Attack on LEA by Algebraic Representation of

Modular Addition,” IEEE Access, vol. 8, pp. 212794-

212802, 2020.

[6] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi,

et al., “A Lightweight Authentication Mechanism for

M2M Communications in Industrial IoT Environment,”

IEEE Internet of Things Journal, vol. 6, no. 1, pp. 288-

296, 2019.

[7] M. Shin and S. Kim, “A Study on the Security

Framework for IoT Services based on Cloud and Fog

Computing,” Journal of Korea Multimedia Society, vol.

20, no. 12, pp. 3-27, Dec. 2017.

[8] IETF, “Diffie-Hellman Key Agreement Method,” RFC

2631, 1999.

