
Journal of Multimedia Information System VOL. 8, NO. 3, September 2021 (pp. 191-196): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.3.191

191

Abstract: Computational thinking refers to the process

and method of solving everyday problems using

computers. When teaching a computational thinking class

for computer majors and non-majors at university, the

easiest example to deliver the concept of computational

thinking is sorting. Sorting is the concept of arranging

given data in order. In this work, we have implemented

four visualized sorting algorithms that anyone can easily

use. In particular, it helps to understand the difference

between the algorithms by showing the number of

comparisons and exchanges between elements, which are

the criteria for evaluating the performance of the sorting

algorithm in real time. It was confirmed that the practice

of using the sorting visualization app developed in this

research contributed to the improvement of students’

understanding of computational thinking.

Keywords: Computational Thinking, Sorting Algorithm,

Visualized Sorting App, Comparison and Exchange Operation.

I. INTRODUCTION

Computational thinking refers to the process and

method of solving everyday problems using computers [1].

Given a certain problem, the way humans solve this

problem and the way an individual solves this problem

using a computer may be different. There is also a study

using App Inventor 2 developed at MIT as a method to

increase the computational thinking learning ability of

elementary school teachers [2]. This study suggests that it

can stimulate the interest of elementary school students in

that smartphone-linked education, a feature of App

Inventor, is possible rather than Scratch. We will conduct

a study on how to promote computational thinking in

college students.

The principal researcher has been teaching

computational thinking classes for computer majors and

non-majors since 2016. In 2017, in the first class of the

Computational Thinking course at UBC in Canada, he

watched the practice of arranging 52 trump play cards

along with the introduction of the class contents. Based on

this experience, he has been conducting card sorting

practice in the first hour of his computational thinking

class. The process in which students place cards by hand is

a kind of sorting process, and reports are being submitted

that describe the process each team practiced step by step.

By explaining that the content described in this report is

an algorithm, it informs that the students can describe the

algorithm even if they have never programmed before,

thereby inducing the students’ interest [3].

Sorting is the first subject to learn in data structure and

algorithm classes in computer science and engineering

majors. We describe and implement based on ascending

sort with increasing numbers in this work. Representative

sorting algorithms are divided into basic sorting group of

bubble sorting, selection sorting, and insertion sorting as

well as merge sorting, quick sorting, and heap sorting with

good execution time efficiency. When the number of

elements to be sorted is n, the average execution time of

basic sort takes O(n2), and merge, quick, and heap sort

takes O(nlog2n) on average [4].

Explaining basic sorting makes it easy for students to

understand. However, even with the same basic sort, many

students find it difficult to completely understand the

difference between bubble sort, selection sort, and

insertion sort. In particular, if the basic operation of

sorting, the number of comparisons and exchanges of two

elements, is calculated, the difference in understanding is

evident. This work aims to develop an application

program that easily shows the difference in sorting

methods in the form of animation for anyone from

children to computer majors, and to use it to experience

the concept of computational thinking from the user’s

point of view.

Section 2 describes the related works and Section 3

explains the development of the visualized sorting

Brief Paper:

Improving Computational Thinking Comprehension through

Visualized Sorting App Development

Jongwan Kim1*, Taeseong Kim2

Manuscript received August 30, 2021; Revised September 13, 2021; Accepted September 15, 2021. (ID No. JMIS-21M-08-028)

Corresponding Author (*): Jongwan Kim, Gyeongsan, Daegu 38453 – S. Korea, +82-53-850-6575, jwkim@daegu.ac.kr
1Division of Computer and Information Engineering, Daegu University, Gyeongsan, S. Korea, jwkim@daegu.ac.kr
2Dept. of Computer Engineering, Daegu University, Gyeongsan, S. Korea, tay97kim@naver.com

Improving Computational Thinking Comprehension through Visualized Sorting App Development

192

program. Section 4 presents the results of a student

satisfaction survey. Finally, conclusion is in Section 5.

II. RELATED WORKS

If you search the Internet for sorting algorithm

implementation programs, you will find the VisuAlgo

website (https://visualgo.net/en), a well-organized

program that is easy to understand. In 2011, Dr. Steven

Halim of the National University of Singapore (NUS)

developed the VisuAlgo web site that can learn various

data structures and algorithms through animation based on

the JavaScript language [5]. Various computer algorithms

such as sorting, search, trees and graphs, and hash tables

are animated on the site. Announced in 2015, VisuAlgo

features a web-based algorithmic visualization tool that

requires no additional software to be installed, allows

users to specify inputs, and the visualization works with

those inputs. A large number of visualizable data

structures and algorithms are included in VisuAlgo,

detailed algorithm animation steps are provided, and an

online quiz tool, which is an important learning element, is

provided too [5].

However, despite the excellence of VisuAlgo itself, the

sorting program is described in English with only some

terms translated, which makes some students unfamiliar

with English uncomfortable. In this research, we develop a

visualized sorting program with Korean interface to make

it more convenient to use than the VisuAlgo site. Figure 1

presents an execution screen of Computational Thinking

for Everyone - Sorting. The program we developed can be

used by anyone, and it is necessary to disclose the source

when using it. CCL (Creative Commons License) is a

positive method of indicating permission for use of works

by which copyright holders can freely use their works by

attaching certain conditions to them. We also allow free

use under the condition of attribution, non-commercial,

and prohibition of alteration (BY-NC-ND). Therefore, it

can be freely used not only by students learning sorting

algorithms, but also by instructors teaching computational

thinking and/or algorithm courses.

Fig. 1. Computational Thinking for Everyone – Sort Execution

Screen.

Saranto Psycharis et al. developed a visualization

algorithm for three basic sorting algorithms: selection,

bubble, and insertion, and performed a study analyzing the

effect of the visualization algorithm on self-efficacy,

metacognition, and computational thinking concepts [6].

According to the experimental results of [6], it is said that

creating a sorting simulation model in the Easy Java

Simulator environment is as helpful to students as writing

pseudo code, and confirming the hypothesis that students’

self-efficacy for computational thinking is also improved.

III. VISUALIZED SORTING PROGRAM

DEVELOPMENT

The sorting program developed in this work aims to

make it easier for users to understand the process of

sorting rather than simply presenting the result of the

sorting algorithm. The app is written in JavaScript (JS),

and as a library to use, React, which is useful for single

page application (SPA) development, is used to display

the sorting progress in real time [7]. The structure of the

developed sorting program determines the size of the array,

selects the sorting method to be sorted, and provides the

start and pause functions of sorting. In particular, the app

execution screen has a main feature that visually expresses

the current state of the array and the entire process of

sorting, a header that displays the number of comparisons,

exchanges, and merges counted when sorting, which is a

characteristic of the development app, and finally a footer

with other information such as the program name, update

date and developers. Figure 2 shows the structure of the

developed application program.

Fig. 2. Schematic Diagram of Sorting Visualizer App.

If a user click on the sorting app site https://sort-

visualizer-duce.vercel.app/ shown in the schematic

diagram in Figure 2, an array of size 8 consisting of

random numbers ranging from 1 to 100 is created, and the

user can start sorting with the array. Alternatively, you can

directly create an array of elements of different sizes or

Journal of Multimedia Information System VOL. 8, NO. 3, September 2021 (pp. 191-196): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.3.191

193

numbers and start sorting. The purpose of this research is

to allow people who want to understand sorting to

compare the differences in sorting methods.

After the user has created an array suitable for sorting,

he or she can select the desired sorting speed and sorting

method. First, the user can specify from 1 to 5 as the

sorting speed, and it was implemented smartly so that the

sorting speed is increased in proportion to the size of the

array. If the speed is set to 1, it is helpful to clearly

understand the concept of the sorting algorithm to be

compared by slowly checking the animation process of

comparing and exchanging elements while sorting with a

small number of elements. On the other hand, if the speed

is set to 5, the sorting process of arrays with large element

sizes can be visually confirmed very quickly, thus

avoiding boredom. In the general case, you can run it

using speed 2, 3, or 4 according to the purpose of the

user’s usage.

When the user selects the array size, sorting speed, and

sorting method, the preparation stage is over. Then the

user clicks the Sort Start button, the sorting starts as

shown in Figure 3. In also, when the user clicks the pause

button, the pause function works for use whenever you

want to check the number of element comparisons and

exchanges during sorting. Figure 3 shows the gray color of

the bars of the elements that have already been sorted

during the selected sorting operation to help users

understand and check the process easily [8]. There are also

red and purple bars during sorting. The red color indicates

the target element that needs to be exchanged. For

example, in selection sort, whenever the minimum value is

found, the color of the bar corresponding to the minimum

value is changed to red. In addition, purple indicates the

element currently being inspected during the sorting

process, and it is easy to check where the sorting is

performed through the purple bar. Finally a light blue bar

indicates an element that has not yet been sorted.

Fig. 3. Meaning of Bar Colors in the Sorting Process

As an example of sorting performance evaluation, when

five elements 13, 47, 32, 4, and 25 are given, the number

of comparisons, exchanges, and merges using the

developed sorting app is presented in Table 1. As the data

changes, the performance of the methods can also change.

Table 1. Performance Evaluation of Sorting Methods for five

elements 13, 47, 32, 4, and 25.

Sorting

Methods

of

Comparisons

of

Exchanges

of

Merges

Selection 10 4 -

Bubble 10 6 -

Insertion 9 6 -

Merge 14 6 4

Unlike the three basic sorts, each merge sort recursively

calls merge sort twice on left and right elements inside, so

you cannot directly specify the sorted elements when the

merge sort is executed once. Instead, light gray is used for

the bar color of elements that are not in the range of merge

sort currently in progress. Figure 4(a) shows how the

merge sort is divided into two ranges, and Figure 4(b)

shows that the rest of the elements that are not being

sorted are set to light gray to distinguish them. With this

color classification, the user can more easily understand

which part the merge sort is currently in and it helps to

understand the sorting process.

(a) Separate Two Division Ranges in Merge Sort.

(b) Displays the Color of the Element Currently Being

Inspected (except for Gray).
Fig. 4. Visually Check the Progress of Merge Sort.

IV. STUDENT SATISFACTION SURVEY

RESULTS

The usage of the developed sorting program was

lectured, and students were given a task to use selection,

bubble, and insertion sort for seven random elements, and

to understand the difference in algorithms focusing on

Improving Computational Thinking Comprehension through Visualized Sorting App Development

194

comparison/exchange operations of each sort. The first

author was in charge of two lectures for the first-year

students majoring in computer engineering in the first

semester of 2021, and 27 out of 29 students in Class A

submitted assignments for convenience, and 21 out of 28

students in Class B. A survey was conducted with the

students at the end of the class. In Class A, 25 people

responded to the questionnaire, and in Class B, 24 people

responded.

Table 2. Survey Questions for Students.

Q1: Do you think this subject is easy?

Q2: Do you think Task 1 is an appropriate task for

understanding algorithms?

Q3: Did Task 1 help you understand computational

thinking?

Q4: Do you think Task 2 is an appropriate task for

understanding algorithms?

Q5: Did Task 2 help you understand computational

thinking?

Q6: Compared to VisuAlgo, is the Daegu University

sorting app developed by the authors easier to use?

The main content of the survey related to this study is to

find out whether Task 1 (Practice of sorting using Trump

cards) and Task 2 (Practice of sorting algorithm app and

writing an algorithm comparison report) are helpful in

understanding the sorting method. In addition, by

receiving students’ opinions on the difficulty of the

subject, we tried to figure out whether the proposed

method is helpful for class understanding, and the Q6

question was to measure whether the developed app is

easier to use compared to the existing VisuAlgo web.

Table 2 presents the survey questions. Students responded

on a 5-point Likert scale of 1 (very negative), 2 (negative),

3 (moderate), 4 (positive), and 5 (very positive).

Table 3 shows the results of understanding the sorting

algorithm through Task 1 and Task 2 for 49 respondent

students. Although the difference is slight, the satisfaction

of the method using the trump card (Q2) and the sorting

comprehension method (Q4) experienced in the sorting

app practice showed different results, with class A having

higher Q4 and class B having higher Q2. Naturally,

similar results were obtained for Q3 and Q5, which are

questions to determine whether Tasks 1 and 2 were helpful

in understanding computational thinking. As a result of

integrating and comparing the results of the two groups

(A+B), the satisfaction level of Task 1 was slightly higher,

but the level of help in understanding computational

thinking was high in Task 2, although it was subtle. It can

be seen from this that Task 1 performs the sorting action

directly without using a computer, thus it presents a higher

result in terms of student satisfaction than Task 2, which

requires more time and effort to practice the app. However,

it can be observed that students judge that the Task 2

practice is slightly helpful in understanding computational

thinking. In addition, it can be confirmed from the Q6

response that students who use the app developed in this

work rather than the VisuAlgo app get high scores in

terms of task purpose and ease of use. In particular, it can

be seen that the satisfaction responses of the two classes to

this question are not different from the other questions.

The average response to the Q1 question, the difficulty

of this subject, is 3.29, which is 19.2% ((4.07-3.29)/4.07)

difference from the Q2-Q6 question average of 4.07, thus

many students think that the computational thinking

subject is not easy. However, it can be seen that students’

understanding of computational thinking is improved by

performing two tasks. The proposed research through

these survey responses is judged to have contributed to the

achievement of students’ learning objectives.

Table 3. Survey Response Results (Students A&B in 2021,

Students C in 2018).

Questions Avg(A) Avg(B) Avg(A+B) Avg(C)

Q1 3.2 3.38 3.29 -

Q2 4.08 4.42 4.24 4.19

Q3 3.88 4 3.94 4.0

Q4 4.28 3.96 4.12 4.06

Q5 4 3.92 3.96 4.09

Q6 4.09 4.08 4.09 -

Class C in the right column of Table 3 was additionally

presented as a result of conducting Q2-Q5 questionnaires

to students in 2018. As with the results conducted for

students in 2021, the satisfaction of Task 1 was high, but

the level of help in understanding computational thinking

was slightly higher in Task 2. The sorting comprehension

method (Q4) experienced in the sorting app practice in

class C is the result of using the VisuAlgo app since it was

before the development of the sorting app in this work.

V. CONCLUSION

In this paper, we implemented four sorting algorithms

that anyone could use easily. In particular, it was

confirmed by the students’ survey that it was helpful to

understand the difference between the sorting algorithms

by showing the number of comparisons and exchanges

between elements as the criteria for performance

evaluation in real-time animation. Developing a sorting

program that is easy to explain to anyone as a visualized

algorithm helps to understand the concept of sorting in

detail in terms of computational thinking represented by

abstraction and automation. The app developed by this

research team responded better to university students

participating in the survey than VisuAlgo developed at the

NUS. The survey confirmed that the educational effect of

Journal of Multimedia Information System VOL. 8, NO. 3, September 2021 (pp. 191-196): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.3.191

195

the proposed method was improved by 19.2% when

comparing the development of the proposed sorting app

and the concept understanding level 4.07 using it

compared to the average difficulty of 3.29 in the

computational thinking class. The sorting app program

developed in this work can be used by other instructors

and students in accordance with the purpose of open

software that allows free use under the conditions of

attribution, non-profit, and prohibition of alteration.

As a future research direction, it is expanding to linear

search and binary search app development as a search

method that is good for beginners to understand.

REFERENCES

[1] J. Wing, “Computational Thinking,” Communications

of the ACM, vol. 49, no. 3, pp. 33-35, 2006.

[2] B. Lim, “App Inventor 2 As a Tool for Enhancement

of Computational Thinking,” Journal of The Korean

Association of Information Education, vol. 20, no. 5,

pp. 519-526, 2016.

[3] J. Kim and J. Chae, Computational Thinking for

Everyone. Seoul, Korea: Jungiksa, 2020.

[4] B. Moon, Easy-to-Learn Algorithms 2nd Edition. Seoul,

Korea: Hanbit Academy, 2018.

[5] S. Halim, “VisuAlgo – Visualising Data Structures and

Algorithms Through Animation,” Olympiads in

Informatics, vol. 9, pp. 243-245, 2015.

[6] S. Psycharis, D. Mastorodimos, K. Kalovrektis, P.

Papazoglou, L. Stergioulas, and M. Abbasi,

“Algorithm Visualization and its Impact on Self-

efficacy, Metacognition and Computational Thinking

Concepts Using the Computational Pedagogy Model

in STEM Content Epistemology,” in Proceedings of

International Journal of Physics and Chemistry

Education, vol. no. 4, pp. 71-84, 2018.

[7] React: A JavaScript library for building user interfaces,

https://ko.reactjs.org/.

[8] T. Kim and J. Kim, “Developing an Easy-to-Use

Sorting Visualization Application,” in Proceedings of

the 2021 Spring Conference of the Korea Multimedia

Society, vol. 24, no. 1, pp. 462-463, April 2021.

Improving Computational Thinking Comprehension through Visualized Sorting App Development

196

