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I. INTRODUCTION  

With the increasing progress of computer technology, my 
country's 3D animation technology industry has also ush-
ered in the spring of development. Its application range is 
very wide, involving architectural planning, product design, 
advertising animation, film and television special effects, 
virtual world and many other fields. Among them, 3D ani-
mation technology has made rapid progress in film and tel-
evision special effects. Although my country's 3D anima-
tion technology is developing gradually, there is still a big 
gap compared with the same industry in other parts of the 
world. Therefore, we must correctly understand the restric-
tive factors in the development of 3D animation technology 
in the art of film and television special effects, and make 
full use of the existing production methods of film and tel-
evision special effects. By combining 3D animation tech-
nology with film and television production, it will continue 
to promote the development of China's film and television 
industry. 

3D human body animation modeling is an important 
branch of 3D animation modeling, which can promote more 
realistic film and television animation works [1-2]. Nowa- 
days, machine learning and computer vision are widely 

used in human animation and other fields, including im-
age/video-based human motion data acquisition technology, 
digital character and scene modeling, interactive character 
animation control and motion generation, etc. Computer vi-
sion techniques are widely used. Besides, machine learning 
theory is also widely used in the field of intelligent 3D hu-
man animation research. Three-dimensional human body 
animation technology can be generally regarded as two cat-
egories: one is model animation developed on the basis of 
traditional computer animation technology, especially tra-
ditional two-dimensional computer animation technology. 
The second is the production technology of human body 
animation based on captured data with the popularization 
of motion capture system. The simple academic definition 
of motion capture is: Motion capture is a comprehensive 
use of computer graphics, electronics, machinery, optics, 
computer animation and other technologies to capture the 
movements or expressions of the subject of the perfor-
mance. Through the captured data of these actions or ex-
pressions, the direct drive to the animation image model is 
realized. Motion capture is divided into different categories 
such as mechanical motion capture, acoustic motion cap-
ture, electromagnetic motion capture, and optical motion 
capture. 
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Traditional animation utilizes mathematical models to 
produce animation results that meet user needs. Such meth-
ods can be classified as model-based animation methods, 
including key frame animation technology, joint animation 
technology based on kinematics knowledge, and phys-
ics/dynamics methods. Another type of animation produc-
tion technology uses real collected 3D motion data to gen-
erate animation models. Generate 3D human animation by 
adopting a data-driven approach. In essence, it is a data-
driven animation production method, including editing, 
compositing, and reusing technologies based on motion 
capture data. The popularization of commercial human mo-
tion capture systems makes obtaining realistic 3D human 
motion data no longer a limitation for making realistic 3D 
human animation. 3D human motion databases that can be 
reused have also appeared, which makes the data-driven ap-
proach an important means of making realistic 3D human 
animation. 

This paper focuses on the data-driven 3D human anima-
tion modeling research program. Specifically, it uses real 
3D human motion data and uses machine learning methods 
to realize 3D human body modeling to meet the needs of 
3D human body modeling in film and television animation. 
Human motion has strong randomness and continuity. In or-
der to improve the accuracy of motion recognition, time se-
ries information is needed to describe the characteristics of 
the motion process. Long short-term memory network 
(LSTM) is a variant of recurrent neural network (RNN), 
which has been widely used in many fields. LSTM can re-
alize the modeling of variable-length time series infor-
mation, and has certain feature extraction capabilities [2]. 
Therefore, this paper proposes a 3D human animation mod-
eling method based on LSTM cyclic neural network to re-
alize automatic recognition of human motion. The real 
sensing data used in this paper is obtained through inertial 
sensors. In this paper, based on the WISDM dataset [3], a 
two-layer LSTM neural network is used to extract time se-
ries features. By modeling the three-axis acceleration time 
series information of the front pocket of the right leg of the 
human body, real-time recognition of six human action 
modes: walking, jogging, going upstairs and downstairs, 
sitting, and standing. This paper verifies its effectiveness 
through comparative experiments. The experimental results 
show that the method in this paper can provide a feasible 
solution for the research of human motion recognition and 
modeling based on motion capture data, and provide a new 
solution for film and television animation production. 

   

II. RELATED WORK 

Conde and Thalmann [4] used reinforcement learning 
theory to learn the virtual environment where the virtual 
character is located and analyze the hierarchical structure of 

the virtual scene. Noser et al. [5] and Kuffner and Latombe 
0 established a multi-channel, high-level behavioral deci-
sion-making and driving model for virtual characters based 
on synthetic vision, memory and high-level reasoning and 
learning mechanisms, and realized autonomous roaming of 
virtual characters in obstacle scenes. Behavior animation 
generation. In the work of Ref [7] and Ref [8], machine 
learning techniques are used to provide a memory model 
for virtual characters, so that they can remember the infor-
mation provided by the user and the instructions issued ear-
lier. Ref [9] proposed a self-organizing structure for learn-
ing the virtual scene structure and the behavior of reaching 
a certain target point in the scene, etc., to realize autono-
mous animation generation. Ref [10] proposed the concept 
of virtual human imitation learning, that is, using machine 
learning theory to endow virtual characters with a certain 
autonomous learning ability, and enable them to simulate the 
physical behavior demonstrated by the user through training. 

The essence of 3D human animation creation using mo-
tion capture technology is a data-driven animation creation 
method, which has the advantages of easy data acquisition, 
high precision, strong realism and high production effi-
ciency. Motion synthesis is the focus and key technology of 
motion data reuse. It is also the most difficult part of the 
motion reuse process. Motion capture data has high dimen-
sionality, large amount of information, complex structure, 
spatiotemporal continuity and Riemannian manifold struc-
ture, all of which bring challenges to motion synthesis. Mo-
tion hybrid [12-15] is a simple and efficient motion synthe-
sis model. Such methods first preprocess motion segments 
of the same type, including using the DTW algorithm to 
align them in time sequence, and then make each motion 
frame have similar spatial coordinates through linear trans-
formation, that is, coordinate alignment. The motions after 
time sequence alignment and coordinate alignment are uni-
fied in structure. By performing weighted interpolation on 
these unified motions, and then constrained reconstruction 
of the interpolated motion, a very realistic new motion can 
be obtained. However, the data organization method of such 
methods is too simple to mine the inherent laws in the data, 
and users cannot interact with the system in real time, mak-
ing it difficult to control the results of motion synthesis to 
meet the needs of users. Another class of methods is para-
metric motion synthesis. Parametric motion models [16-18] 
can effectively solve the problems of motion graphs by ex-
ploiting some physical properties of motion. Kwon and 
Shin [18] introduced the type of motion, speed, acceleration 
and foothold into the synthetic model in the form of param-
eters, and controlled during the synthesis process, which 
can solve some problems such as foot sliding and orienta-
tion shaking. Heck and Gleicher [19] constructed the nodes 
of the motion graph as a continuous parameter space, which 
brought fine-grained control to the originally very limited 
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splicing and combination methods. For example, this 
method can synthesize richer and more delicate output by 
adjusting parameters Boxing sport. These methods greatly 
improve the controllability of the motion synthesis process, 
but the semantic level of these physical parameters is too 
low, and the content needs to be manually specified in ad-
vance, which cannot automatically adapt to changes in mo-
tion types. 

To address the above challenges, researchers apply deep 
learning methods to motion synthesis. Nowadays, the emer-
gence of various deep learning models has greatly pro-
moted the development of related fields. One of the im-
portant advantages of the deep learning model is that it can 
automatically learn the characteristics of the data from the 
data set, which provides a new research direction for data 
editing and processing. Gatys et al. [20] used the deep net-
work model to extract the style features and content features 
of the image in the hidden layer respectively, and then 
through the editing process in the hidden layer, a new image 
that maintained the content of the original image but had a 
different style could finally be obtained. In the field of mo-
tion data reuse, Taylor and Hinton [21] constructed a model 
of a restricted Boltzmann machine, and performed motion 
mixing by extracting motion-related parameters to generate 
new motions. Holden et al. [22] proposed a motion synthe-
sis method based on a deep learning framework. This 
method has relatively broad requirements on the format of 
the training data and does not require the above-mentioned 
various operations. Any type and length of motion capture 
data can be exploited to train the model. The motion mani-
fold learned by the deep model framework can be expressed 
by a hidden unit of a autoencoder, which can synthesize var-
ious types of complex motions based on the parameters 
given by the user. In addition, problems such as footstep 
sliding and orientation shaking can be solved by constrain-
ing the hidden unit space. 

 

III. SYSTEM DESIGN 

The 3D dynamic image modeling of the human body 
based on the data-driven method can be regarded as the syn-
thesis and modeling of human motion using the motion data 
reuse technology. In recent years, various machine learning 
techniques such as subspace analysis, statistical learning, 
and manifold learning have been widely used to analyze 
and learn the existing 3D human motion data and guide the 
generation of new motion data. This paper proposes the use 
of deep learning models to achieve 3D human motion mod-
eling. The data is acquired through the motion capture de-
vice and preprocessed by the information processing mod-
ule. Then, a two-layer LSTM neural network is used to ex- 
tract time series features and model the motion of human 

legs. The specific process of the method proposed in this 
paper is as follows. 

 
3.1. Human Motion Data Acquisition and Preprocessing 

The optical motion capture system is the most commonly 
used. Its working principle is to wear photosensitive nodes 
on each limb of the athlete, so that the movement of the 
athlete can be restored by the three-dimensional infor-
mation of these nodes captured by the cameras installed 
around the capture field. This type of system can capture 
human movements very accurately, and the device itself 
does not impose too much constraints on the movement of 
the athlete. 

In addition, commercial industry motion capture and 
analysis systems can also be used to track, capture and cal-
ibrate the face and body movements of the collector in real 
time. The EvaRT motion capture software can save the 
change data of the marker points on the actor and read it 
directly by the software, and then transfer data such as ac-
tions and models in the 3D modeling software. This paper 
uses public datasets for experimental evaluation. 

Due to the influence of capture conditions and errors, or 
to meet specific application requirements, the captured 3D 
human motion data may require specific preprocessing be-
fore being applied to 3D human animation creation. Motion 
data preprocessing includes reconstruction of missing fea-
ture points in data, natural/realistic 3D human motion data 
evaluation, motion data compression, key frame extraction, 
and motion sequence segmentation and recognition. Com-
mon dataset preprocessing operations include data smooth-
ing and data windowing. The motion capture technology 
captures the movement of the performer, and through pre-
processing and post-processing, the original data is con-
verted into model motion data in a standard format, which 
is used for driving various 3D models. 

 
3.2. LSTM-Based 3D Human Behavior Pattern Model-

ing and Recognition Method 
Recurrent Neural Networks (RNNs) can process se-

quence data and can model and describe human motion pro-
cesses. However, ordinary RNNs have long-term depend-
ence problems, and are prone to gradient disappearance and 
gradient explosion during network training [23]. Therefore, 
this paper proposes to select LSTM which is a variant of 
RNN, to build a human action recognition model. 

 
3.2.1. Preliminary on LSTM 

Like ordinary RNN, the input of the LSTM network at 
the current moment is still the output of the hidden state at 
the previous moment and the input feature at the current 
moment, and the network structure is also a chained neural 
network structure composed of a series of repeated neural 
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network units. Different from the traditional RNN, LSTM 
introduces a "gate" mechanism and a memory unit de-
scribed by the cell state inside each loop body neuron, 
which can control the memory and forgetting degree of the 
previous information and the current moment information, 
thus solving the traditional RNN. The long-term depend-
ency problem is widely used. The internal structure of 
LSTM neurons is shown in Fig. 1.  

LSTM neurons are composed of cell states and “gate” 
mechanisms (forgetting gate, input gate, output gate). In the 
figure, 𝐶௧ represents the cell state, representing long-term 
memory. By adding or deleting state information on 𝐶௧ 
through the "gate" structure, the modified state information 
can be controlled to be transmitted to the next moment. σ 
represents the sigmoid activation function, which can out-
put 0 to 1 the number between is mainly used to describe 
what information is passed after sigmoid, a value of 0 
means that no information passes through sigmoid, and a 
value of 1 means that all information at this time passes 
through sigmoid. ℎ௧ିଵ and h௧ represent the hidden state 
of the previous moment and the current moment, respec-
tively, ⊕  represents vector addition, and ⨂  represents 
vector multiplication. 

Equations (1) to (6) describe how LSTM updates the 
state of the neural network unit according to the "gate" 
mechanism at any time step. The input is fed into each 
"gate" unit of the LSTM unit. The first step is to control 
which previously recorded information should be retained 
by the forget gate. It can be seen from Fig. 1 that the input 
of the forget gate at the current moment is the hidden state ℎ௧ିଵ at the previous moment and the input information 𝑥௧ 
at the current moment, as shown in equation (1). The second 
step is to update 𝐶௧ by the input gate. First, pass 𝑥௧ into 
the sigmoid  function and tanh  function respectively to 
obtain the 𝑖௧ vector and the new candidate value vector 𝐶ሚ௧. 
Afterwards, it is multiplied by the two-part vector of 𝐶ሚ௧ 
and 𝑖௧ to determine whether the input information of the 
network at the current moment is saved in 𝐶௧ to update the 

cell value. The cell update formula is shown in equation (2) 
−(4). Finally, the final output value of the LSTM neuron at 
a time step is determined by the output gate. First, 𝑥௧ is 
calculated by the sigmoid  function to obtain the vector 𝑂௧. Then multiply the 𝐶௧ and 𝐶௧ vectors processed by the tanh function to determine the final output information of 
the LSTM neuron at the current moment. The output gate 
formula is shown in equation (5) and equation (6). 

 𝑓௧ = 𝜎൫𝑊௙ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௙൯. (1)
 𝑖௧ = 𝜎ሺ𝑊௜ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௜ሻ. (2)
 𝐶ሚ௧ = 𝑡𝑎𝑛ℎሺ𝑊௖ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௖ሻ. (3)
 𝐶௧ = 𝑖௧ ∘ 𝐶ሚ௧ + 𝑓௧ ∘ 𝐶௧ିଵ. (4)
 𝑂௧ = 𝜎ሺ𝑊௢ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௢ሻ. (5)
 ℎ௧ = 𝑂௧ ∘ 𝑡𝑎𝑛ℎሺ𝑐௧ሻ. (6)
 
In the formula: 𝑊௙ , 𝑊௜ , 𝑊௖ , and 𝑊௢  represent the 

weight matrix. 𝑏௙, 𝑏௜, 𝑏௖, and 𝑏௢ represent the bias vec-
tor; [,] represent the splicing of two vectors. 

  
3.2.2. Network Structure Design 

In order to identify which kind of motion the person acts 
in real time, the structure of the LSTM network designed in 
this paper consists of an input layer and a hidden layer: in-
cluding two LSTM layers, a fully connected layer and an 
output layer. 

(1) Input layer: The input is the preprocessed data. The 
input dimension of RNN for the data is [number of 
samples, number of time steps, number of input fea-
tures], namely: [54906, 90, 3]. 

(2) The first layer of LSTM layer: the time step is n=90, 
and the number of neurons in each time step of LSTM 
is 32. Since the input is the data of the accelerometer 
x, y, and z axes, the number of input features is 3. In 
addition, the hidden state output of each time step is 
used as the input of the next LSTM layer. The selec-
tion of the time step n and the number of neurons 
needs to be set experimentally, which will be ex-
plained later. 

(3) Second LSTM layer: The number of neurons inside 
the LSTM unit at each time step is 32. Since the sam-
ple set and its corresponding category need to be used 
as input in the process of action pattern recognition, 
LSTM only needs to output at the last time step as the 
input of the fully connected layer. 

(4) Fully connected layer: There are 32 neurons. The 

 

  

Fig. 1. Structure of LSTM neurons. 
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Relu function is adopted in our model as the activa-
tion function. 

(5) Output layer: Since the network recognizes six hu-
man action patterns of standing, jogging, going up-
stairs, walking, and sitting, the softmax classifier is 
used as the output of the six action patterns, that is, 
the output layer will output the probability values of 
six categories. The calculation formula is shown in 
equation (7): 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑦௧ሻ = ௘೤೟∑ ௘೤೔೔ . (7)
 
In the formula: 𝑖 represents the action mode category, 𝑦௧ and 𝑦௜ represent the probability distribution of the hu-

man action category. Finally, according to the maximum 
likelihood estimation method, the attribute of the action 
mode is judged as the category with the highest probability. 

Besides, a Dropout layer is added after the first LSTM 
layer, the second LSTM layer, and the fully connected layer. 
The Dropout layer will discard neurons with a certain prob-
ability at random when the model is trained each time. 
Since the neurons ignored each time are different, the 
trained networks are also different. Finally, the trained 
model is integrated to predict the average probability. 

 
3.2.3. Model Training 

The collected data is input into the LSTM neural network 
as the motion pattern feature, and the six human motion pat-
tern categories of standing, jogging, going upstairs, going 
downstairs, walking, and sitting are used as outputs. The 
training is realized by minimizing the loss function, and the 
loss function adopts the cross entropy. Loss function, the 
calculation formula is shown in equation (8). 

 𝑙𝑜𝑠𝑠 = − ଵ௠ ∑ 𝑦෤௜𝑙𝑜𝑔𝑦௜௠௜ୀଵ . (8)
 
In the formula: 𝑦෤௜ represents the true value of the i-th 

category, and 𝑦௜ represents the predicted value of the ith 
category of the model. The Adam optimization algorithm 
[24] is used to adaptively optimize the learning rate, which 
has the advantages of efficient computation and less 
memory. The parameters of the model are initialized with 
random values of truncated normal distribution. In the pro-
cess of backpropagation, different from the BP algorithm of 
other neural networks, the backpropagation along time 
(BPTT) algorithm is used to update the parameters. In order 
to prevent the model from overfitting, the method of early 
stopping is used in the iterative process. If the accuracy of 
the model on the test set does not improve by 0.001 within 
10 iterations, the model stops training. After the model 
training is over, save the optimal parameters, and then use 

the saved optimal parameters to identify the human actions 
in the test set. 

 

IV. EXPERIMENTAL EVALUATIONS 

4.1. Experimental Settings 
The experiment in this paper is based on the Windows 10 

system, the CPU model is Intel Core i5-9300H, and the 
memory is 8 GB. The GPU is a notebook computer with 
NVIDIA GTX1650 graphics processor and 4 GB video 
memory. The algorithm is implemented using python lan-
guage based on Google's open-source deep learning frame-
work Tensorflow2.0, and the experimental integrated devel-
opment environment is Pycharm. 

In this paper, we use public datasets to evaluate the ex-
perimental results. This dataset is the public dataset 
WISDM dataset of the Wireless Data Mining Laboratory of 
Fordham University. The WISDM dataset is a public da-
taset released by the Wireless Sensor Data Mining Labora-
tory (2012). This data set uses an Android smartphone as 
the data collection platform, and the smartphone is placed 
in the right front trouser pocket of the subject. The subjects 
completed 6 exercise modes including walking, jogging, 
going upstairs, going downstairs, sitting, and standing 
within a specific time. During this period, the built-in ac-
celerometer of the mobile phone collects the data of the x, 
y, and z axes of the three-axis accelerometer at a sampling 
frequency of 20 Hz. The data set contains a total of 
1,098,207 sample point data from 36 healthy subjects (the 
number of movements of each subject is not equal), and the 
distribution of the number of motion pattern samples is 
shown in Table 1. The continuous activity signal is seg-
mented using a sliding window with a time length of 2.56s 
and an overlap rate of 50%. In this paper, 70% of the data 
is used as the training set and 30% of the data is used as the 
test set. For the convenience of processing, the data set is 
normalized. The processing flow is as follows: 

 𝑋௡௢௥௠௔௟௜௭௘ = ௑ିఓೣఙೣ . (9)
 𝑌௡௢௥௠௔௟௜௭௘ = ௒ିఓ೤ఙ೤ . (10)

 𝑍௡௢௥௠௔௟௜௭௘ = ௓ିఓ೥ఙ೥ . (11)

  
In the formula: 𝑋௡௢௥௠௔௟௜௭௘, 𝑌௡௢௥௠௔௟௜௭௘, and 𝑍௡௢௥௠௔௟௜௭௘ 

represent the normalized acceleration value. X, Y, and Z rep-
resent the raw data of the acceleration sensor; 𝜇௫, 𝜇௬, and 𝜇௭ represent the average values of the accelerometer’s x, y, 
and z axes, respectively; 𝜎௫, σ୷, and σ୸ represent the var- 
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iance of the accelerometer’s x, y, and z axes, respectively. 
In the evaluation, the model conducts 10 experiments on 

the test set, and takes the average result of 10 runs as the 
final value. The parameters of the LSTM network have a 
great influence on the recognition effect of the action pat-
tern, so it is necessary to conduct experimental analysis on 
different parameters. In the experiment, the training model 
is aimed at 6 kinds of human action patterns, the weight and 
bias parameters are continuously updated, and the accuracy 
and loss values of the test data and training data after each 
iteration are recorded for comprehensive comparison and 
analysis. In addition, in the selection of model hyperparam-
eters (such as the time step of LSTM neural network and 
the number of neurons), this paper determines the parame-
ters through comparative experiments. This accuracy rate is 
selected as the indicator: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே. (12)
 
In the formula, True Positive (TP)and True Negative (TN) 

represent the number of samples that predict all positive 
samples as positive and negative samples, respectively. 
False Positive (FP) and False Negative (FN) represent the 
number of samples that predict all negative samples as pos-
itive and negative samples, respectively. 

  
4.2. Experimental Results on Different Sport Modes 

In this section, this paper evaluates the experimental re-
sults of our method on the WISDM dataset. Set the time 
step to 90 and the Dropout parameter to 0.2. The results of 
6 different types of action patterns are shown in Table 2. 
The action mode Sitting has the highest accuracy rate, 
reaching 96.52%. The accuracy rate of Standing also ex-
ceeds 96%, slightly lower than Sitting, which is 96.36%. 
This is mainly because the movements of sitting and stand-
ing are the simplest, there is no change in movement, and 
the prediction model is easier to fit. Secondly, the accuracy 
rates of Jogging and Up Stairs reached 95.48% and 95.37%, 
respectively. Compared with the previous action modes, the 
accuracy rate of Down Stairs has dropped significantly, and 
its value is 93.11%, which is 3.41% lower than that of the 
Sitting category. The lowest experimental result is the 

Walking category, with an accuracy rate of 92.95%. For 
Walking, 3.14% and 3.36% of the data were identified as 
Up Stairs and Down Stairs. This is mainly because Walking 
has similarities in body swing and leg movements between 
walking and going up and down stairs, so there are rela-
tively large misidentifications. 
 
4.3. Experimental Results Compared with Different 

Methods 
To further evaluate the effectiveness, the proposed 

method is compared with existing research. The four meth-
ods involved in the comparison (Methods in Ref [25], Ref 
[26], Ref [27], and Ref [28]) are all methods designed based 
on the deep learning architecture. The compared results can 
be seen in Fig. 2. The horizontal axis represents 6 different 
action pattern categories, and the last item is the average of 
all category results. The vertical axis is accuracy. The ex-
perimental performance of the method in Ref [25] is the 
worst among all 5 methods, and its average accuracy is 
83.27%. The method in Ref [25] is even less than 80% ac-
curate on the upstairs category dataset. Among all the five 
methods, the algorithm in this paper shows better perfor-
mance, with an average accuracy rate of 94.97%. The aver-
age accuracy of Methods in Ref [27] and Ref [28] is very 
close, with a difference of only 0.1%. However, the experi-
mental results of the two on different categories are quite 

Table 1. Sports mode data distribution. 
Sports mode Ratio (%) 

Walking 38.6 
Jogging 31.2 

Up Stairs 11.2 
Down Stairs 9.1 

Sitting 5.5 
Standing 4.4 

Table 2. Confusion matrix of accuracies of activity recognition. 

 Walking
(%) 

Jogging
(%) 

Up 
stairs 
(%) 

Down 
stairs 
(%) 

Sitting
(%) 

Standing
(%) 

Walking 92.95 0.55 3.14 3.36 0 0 

Jogging 0 95.48 1.02 0 0.71 2.79 

Up stairs 0.11 0.92 95.37 2.46 0 1.14 

Down 
stairs 4.20 0 2.69 93.11 0 0 

Sitting 0.41 0 1.64 0.64 96.52 0.79 

Standing 0 2.13 1.51 0 0 96.36

  

Fig. 2. Comparative experimental results with existing studies. 
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different. The experimental results of Ref [27] are more sta-
ble in different categories with less fluctuation. The exper-
imental results of Ref [28] in different categories fluctuate 
much more. The experimental results of this method in the 
two categories of Walking and Down Stairs are not lower 
than those of the method in this paper. Another very inter-
esting observation is that several methods involved in the 
comparison all use more complex network structures. How-
ever, our method performs better in all datasets. The reason 
for this situation may be that the method in this paper is 
more applicable to the 6 simple action modes in the 
WISDM dataset. Models with more complex network 
structures are more prone to overfitting and performance 
degradation when dealing with these datasets. 
 
4.4. Experimental Results over Number of Epochs Dur-
ing Training 

This section evaluates how the experimental results 
change as the number of iteration training increases. The 
accuracy curves of the training set and the test set during 
the training process are shown in Fig. 3. It can be seen from 
the figure that in the initial stage, the accuracy of the model 
on the training and testing data sets can reach 64.75% and 
74.46%, respectively. This shows that our model has an ad-
vantage in handling action recognition. With the increase of 
the number of iterations, the recognition rate of the model 
gradually increases whether it is the training data set or the 
test data set. The experimental results on the training data 
set rise rapidly as the model iterates and cross with the ex-
perimental results on the test set. When the iteration reaches 
about 55 times, the experimental results on the test data set 
gradually converge and become stable. In this paper, the 
time step is set to 90, and the dropout parameter is 0.2. It 
can be seen that the model is better in terms of recognition 
rate stability and overfitting. This is because when the drop-
out parameter is 0.2, the dropout layer will randomly gen-
erate the network structure, which can effectively prevent 
overfitting. Therefore, the hyperparameter time step used 

by the final LSTM neural network is 90, and the dropout 
layer parameter is set to 0.2. 
 

V. CONCLUSION 

In the field of film and television animation, the use of 
motion capture technology to model three-dimensional dy-
namic images of the human body can meet the requirements 
of a certain degree of professionalism faster and more con-
veniently than traditional hand K animation. At the same 
time, it can shorten the production cycle and improve the 
efficiency of 3D animation modeling. Considering the 
strong randomness and continuity of human motion, time 
series information is needed to describe the characteristics 
of the motion process to increase the accuracy of action 
recognition. In this paper, a human motion recognition 
method based on LSTM neural network is designed using 
open dataset WISDM as raw data. A two-layer LSTM net-
work is constructed to model and describe human temporal 
motions. The experimental results show that the average 
recognition accuracy is 94.97%. To measure the perfor-
mance of this method, this method is compared with four 
methods based on in-depth learning model. The experi-
mental results verify the validity of this method. In the fu-
ture, the research group will study the human multi-node 
motion information, and further explore the human motion 
capture method based on inertial information. 
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