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I. INTRODUCTION  

Recently, in-car navigation systems have become inte-
gral to modern vehicles, providing drivers with real-time 
guidance and enhancing their overall driving experience. 
These systems rely on GPS technology, map data, and in-
telligent algorithms to offer accurate and efficient naviga-
tion [1-2]. However, the increasing complexity and reliance 
on in-car navigation systems pose significant challenges in 
ensuring their safety and reliability. Traditional approaches 
to detecting and controlling safety issues in these systems 
often involve centralized analysis, which may compromise 
data privacy and result in performance limitations [3]. 
Therefore, there is a need for a decentralized mechanism 
that can enhance the accuracy and efficiency of safety de-
tection and control in in-car navigation systems while pre-
serving data privacy [4-5]. Ensuring the safety of in-car 
navigation systems is paramount to preventing accidents 
and mitigating potential hazards. Traditional approaches to 
safety mechanisms have relied on centralized systems that 
analyze data from individual vehicles. However, this ap-
proach raises concerns about data privacy and scalability. 
Additionally, centralization may result in performance lim-
itations and delays in detecting and responding to safety is- 

sues. 
Federated learning is a privacy-preserving approach that 

enables the collaborative training of machine learning mod-
els across a network of devices or vehicles without sharing 
raw data [6-7]. In the context of in-car navigation safety 
systems, each vehicle possesses a dataset consisting of sen-
sor readings, location information, and other relevant data 
collected during driving. Instead of transmitting the raw 
data to a central server for analysis, federated learning al-
lows the vehicles to perform local model training using 
their respective datasets. The training process involves iter-
atively updating the model parameters based on the local 
data. The updated model parameters are then sent to a cen-
tral server, aggregating them with the parameters from other 
vehicles [8]. This aggregation step is crucial as it combines 
the knowledge learned from different vehicles without ex-
posing their specific data [9]. Various techniques, such as 
secure aggregation protocols and encryption, can be em-
ployed to preserve privacy during the model aggregation 
process. By leveraging the collective intelligence of a net-
work of vehicles, the resulting model captures the common 
patterns and insights from diverse driving scenarios, en-
hancing the overall detection and control mechanisms of 
the in-car navigation safety system. The decentralized nature 
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of federated learning ensures that sensitive information, 
such as specific driving routes or personally identifiable in-
formation, remains on local devices and is not shared with 
external parties [10]. 

This study suggests an effective federated learning ap-
proach that protects privacy. Based on the multi-server-
multi-client architecture, the client downloads the global 
model, trains with local data, adds noise to the updated pa-
rameters obtained by training, and secretly shares them with 
all servers. The servers perform secure multi-party compu-
tation based on the shared shares and obtain the shared 
shares of the aggregate result. The client downloads all the 
shares, recovers the aggregate results, and updates the 
model. After analysis, this method protects privacy, toler-
ates dropped calls, is compatible with various aggregation 
functions, and is easy to extend to decentralized scenarios. 
The proposed effective federated learning approach that 
protects privacy provides significantly enhanced privacy 
preservation through formal differential privacy guarantees 
compared to existing federated learning techniques. It 
demonstrates greater robustness and flexibility via custom 
aggregation methods, user dropout resilience, and decen-
tralization capabilities. 

The rest of the paper is organized as follows. Section 2 
reviews the related work. Section 3 presents the methodol-
ogy. The simulation and results analysis are presented in 
Section 4, and Section 5 concludes the paper. 

 

Ⅱ. RELATED WORKS 

2.1. In-Car Navigation Systems 
In-car navigation systems are advanced technological so-

lutions integrated into vehicles to provide drivers with real-
time guidance and assistance. These systems utilize a com-
bination of hardware, software, and data to offer drivers ac-
curate directions, map displays, and various features to en-
hance their driving experience. Global positioning system 
(GPS) technology forms the foundation of in-car navigation 
systems [11]. GPS receivers in vehicles receive signals 
from satellites to determine the vehicle's precise location on 
Earth. This information is then used to provide accurate 
navigation guidance. In-car navigation systems rely on de-
tailed map data, including road networks, landmarks, points 
of interest (POIs), and traffic information [12-13]. In-car 
navigation systems often provide voice-guided instructions 
to drivers, ensuring hands-free operation and minimizing 
distractions. Voice prompts guide drivers through turns, 
lane changes, and other maneuvers, enhancing safety and 
convenience [14-15]. In-car navigation systems calculate 
optimal routes based on the selected destination, consider-
ing traffic conditions, road closures, and real-time data. 
Traffic information can be sourced from various providers, 

including GPS probes, sensors, and crowd-sourced data. 
Users can search for specific POIs or browse categories to 
find relevant services [16]. 

 
2.2. Federated Learning in Safety Systems 

Federated learning is a machine learning approach that 
has gained significant attention in developing safety sys-
tems, including in-car navigation safety systems. It offers 
unique advantages for preserving data privacy and improv-
ing the accuracy and reliability of safety mechanisms [17-
20]. Federated learning enables multiple vehicles or devices 
to collaborate in training a shared machine learning model 
without sharing their raw data. Each vehicle locally trains 
the model using its dataset, which consists of relevant sen-
sor readings, location information, and safety-related data. 
The training process occurs on the individual vehicles, en-
suring that sensitive information remains on the device and 
is not exposed to external parties. This decentralized ap-
proach enhances data privacy and addresses concerns about 
sharing personal driving data [21-22]. Once the local train-
ing is complete, the updated model parameters are securely 
aggregated without revealing the specific data from each 
vehicle. Aggregation methods such as secure multi-party 
computation or differential privacy techniques can be used 
to ensure privacy during the model parameter merging pro-
cess [23]. Combining the knowledge from multiple vehicles, 
the resulting model captures a comprehensive understand-
ing of navigation safety patterns, including potential haz-
ards, driving behaviors, and road conditions [24]. Federated 
learning facilitates the development of robust hazard detec-
tion mechanisms in in-car navigation safety systems. 

  

Ⅲ. PROPOSED MECHANISM 

3.1. General Idea and Framework 
Federated learning allows data nodes to perform multiple 

rounds of local model training locally and then upload the 
local model to a central node for parameter aggregation, 
thus avoiding transmitting the original data across nodes 
and protecting data privacy to a certain extent. The core 
idea of the FedAvg algorithm is to use intermediate infor-
mation, such as model parameters, to replace the original 
data to transmit between nodes [25]. However, this interme-
diate information is often the "refinement" of the know-
ledge contained in the original data, and there is still a risk 
of privacy leakage when exposed to adversaries. In this pa-
per, privacy leakage is mainly divided into two categories. 
(i) Privacy leakage caused by local information exposure. 
(ii) Privacy leakage caused by global information exposure. 

This paper proposes the following scheme ideas to resist 
two types of privacy leakage risks. (i) The adversary can 
reconstruct the local dataset from the data uploaded by a 
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client in each round. In this paper, we use secure multi-party 
computation to hide the data uploaded by the client in each 
round and ensure that the server can summarize the up-
loaded data to obtain the correct aggregation results to 
avoid the leakage of local information. (ii) Considering that 
the amount of information in the data only decreases with 
the computation or processing, when the adversary cannot 
steal the personal data uploaded by the user, the closest in-
formation to the original data can be obtained is the aggre-
gation model in each round. In this paper, based on the idea 
of local differential privacy, the client adds a specific per-
turbation to the local model obtained by local training and 
uploads the perturbed model to the server so that the aggre-
gation process of each round satisfies differential privacy, 
that is, whether a sample of a client participates in the train-
ing or not, the distribution of the global model after aggre-
gation does not change significantly [26]. Thus, the aggre-
gation model can be prevented from being exploited by ad-
versaries. For simplicity, we name the proposed federated 
learning scheme PrivNav, which stands for privacy-pre-
serving navigation federated learning. 

The overall framework of PrivNav is shown in Fig. 1. 
Participating nodes include (i) 𝑛 clients 𝐶ଵ, 𝐶ଶ,⋯ , 𝐶௡, re-
sponsible for local storage of their private datasets. (ii) 𝑚 
servers 𝑆ଵ, 𝑆ଶ,⋯ , 𝑆௠ , 𝑚 ≥ 2 , responsible for aggregate 
calculation of data shares. There is a secure channel be-
tween the client and the server. Table 1 lists some notations 
and descriptions used in this paper. 
 
3.2. Threat Model 

The system mainly has three types of roles: client, server, 
and external adversary. This paper mainly considers the 
first two types of internal adversaries who directly partici-
pate in the training process and are more threatening. 

Server. Assume that the server is semi-honest. It can cor-
rectly execute the algorithm and protocol process, but it will 
try to infer more private information based on the collected 
data. Simultaneously, it is assumed that the number of col-
luding server opponents is less than the threshold 𝑡 of se-
cret sharing, with (𝑛, 𝑛)-threshold secret sharing scheme as 
an example, assuming that there is at least one honest server. 

Client. Assuming that the client is semi-honest, the goal 
of the adversary client is to obtain the relevant information 
of the honest client's training data by viewing the interactive 
content rather than uploading maliciously tampered data 
that will reduce the accuracy of the model or even cause the 
training not to converge. Simultaneously, the number of 
colluding clients is assumed to be less than 𝑛 − 1. Other-
wise, for the reversible aggregation function 𝐹(𝑑ଵ,⋯ , 𝑑௡), 
the colluding node can infer the input of the only honest 
node through the output and the known 𝑛 − 1 inputs. 

External adversary. The model is deployed to a node or 
cloud to provide prediction services after training. The ad-
versary can analyze the output from limited access to the 
model interface and try to infer local data on a client. Con-
sidering the knowledge and ability of the adversary, the ex-
ternal adversary cannot obtain the intermediate information 
of the training process, so the attack's success rate is often 
lower than the above two types of internal adversaries. 

   
3.3. Training Process 

The algorithm incorporates the following parameters: a 
set of servers denoted as 𝑆 = ሼ𝑆ଵ, 𝑆ଶ,⋯ , 𝑆௠ሽ, where m is 

Table 1. Symbols and descriptions. 

Symbol Description 𝑆௜ 𝑖th server node 𝐶௜ 𝑖th client node 𝐷௜ Local dataset of 𝐶௜ |𝐷௜| The number of samples that 𝐷௜ contains 𝑁 Minimum of |𝐷௜| 𝑀௥ Global model of 𝑟th round 𝑀௜௥ Local model of the client 𝐶௜ in the 𝑟th round 𝑀௜,௝௥  Model shares uploaded by 𝐶௜ to 𝑆௝ in the 𝑟th round𝑀∗,௝௥  Aggregate share of server 𝑆௝ in the 𝑟th round 𝑅 Total number of training rounds 𝐶 Upper bound on the L2 norm 𝐾 Lower bound on the number of clients 𝐵 Size of mini-batch 𝐸 
The number of iterations of the client traverses the da-
taset 

 
  

Fig. 1. Framework overview of PrivNav. 
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greater than or equal to 2, and a set of clients represented 
by 𝐶 = ሼ𝐶ଵ, 𝐶ଶ,⋯ , 𝐶௡ሽ , with 𝑛  being greater than or 
equal to 3. Each client corresponds to a local dataset, 𝐷 =ሼ𝐷ଵ, 𝐷ଶ,⋯ , 𝐷௡ሽ. It is assumed that a minimum number of 𝐾 clients upload parameters per round. The machine learn-
ing algorithm employed, denoted as 𝐿, is consistently exe-
cuted by all clients during their local training. In this study, 
the optimization algorithm utilized to train the model 𝑀 is 
gradient descent, with the model architecture declared prior 
to the training process. The primary focus of this research 
lies in training neural networks. The parameters for differ-
ential privacy are 𝜀  and 𝛿 , where smaller values corre-
spond to higher degrees of privacy protection. The maxi-
mum number of colluding servers is denoted as 𝑡′, and the 
threshold of the secret sharing scheme should exceed this 
value. Lastly, the total number of training rounds is denoted 
as 𝑅. 

The specific procedure of the algorithm for training a pri-
vacy-preserving federated learning model referred to as Al-
gorithm 1, is presented as follows within an academic con-
text. Initially, the server initializes the model parameters, 
denoted as 𝑆ଵ . Subsequently, the client downloads the 
model and employs its local dataset for training, which re-
sults in acquiring new model parameters. A sequence of op-
erations is conducted on the local model to maintain control 
over the sensitivity of the aggregated model parameters. In-
itially, the local model is trimmed and compressed, fol-
lowed by the addition of qualified noise. The resulting 
model is then shared among all servers in a secretive man-
ner. In this context, the FedAvg weighted average technique 
aggregates the model parameters. To facilitate clarity and 
simplicity in the algorithm presentation, each client is as-
sumed to employ a dataset of equal size for local training. 
After a specific duration, allowing for adequate parameter 
updates, the server locally averages the parameter shares to 
obtain the aggregated shares. The client subsequently 
downloads the aggregate shares from each server to recon-
struct the secret and obtain the updated model parameters. 
Repeating these steps can inform the training process until 
the desired objective is achieved. 

Secret sharing and secure computation protocols are 
commonly designed based on algebraic structures like finite 
fields or commutative rings. However, these structures are 
not directly applicable to real-world data scenarios. Conse-
quently, it becomes essential to appropriately encode data 
and establish a mapping relationship with the aforemen-
tioned algebraic structures. In PrivNav, we transfer the 
model parameters to the ring 𝑍ଶ௟ , where fixed-point num-
bers with 𝑙  bits represent the actual parameters. Within 
this representation, the lower 𝑒 bits are allocated for the 
decimal places. To illustrate, consider the floating-point pa-
rameter 𝑥 in Step14 of the local model 𝑀௜௥. Its encoded 
form, denoted as 𝑥′, is obtained using the expression 𝑥ᇱ =

int(𝑥 × 2௘), where int denotes the rounding operation. In 
this study, we set 𝑙 to be 64 and 𝑒 to be 32, allowing us 
to store the encoded data using the int64 data type. Notably, 
the encoded fixed-point number exhibits a maximum range 
of expression defined as ሾ−2௟ି௘ିଵ + 2ି௘, 2௟ି௘ିଵ − 2ି௘ሿ . 
On the other hand, given an encoded value 𝑥′, the decoding 
process involves a simple computation of 𝑥 = 𝑥′ 2௘⁄ , ena-
bling the retrieval of the original parameter. 

Consider two numbers, x, and y, that are shared among n 
nodes, denoted as ሾ𝑥ሿ = ሼ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௡ሽ  and ሾ𝑦ሿ =ሼ𝑦ଵ, 𝑦ଶ,⋯ , 𝑦௡ሽ , where each node 𝑖  possesses 𝑥௜  and 𝑦௜ . 
To compute the share of 𝑥 + 𝑦, each node independently 
computes 𝑥௜ + 𝑦௜. Consequently, in Step19 of Algorithm 1, 𝑆௜ adds the local shares to obtain the sum of the local mod-
els. It is also straightforward to observe that constant mul-
tiplication is performed locally. Given a share ሾ𝑥ሿ  and a 
constant 𝑐, each node can locally compute 𝑐 × 𝑥௜ to ob-
tain the share ሾ𝑐𝑥ሿ . The ∑ 𝑐 × 𝑥௜௡௜ୀଵ   can be obtained 

Algorithm 1. Privacy-preserving federated learning model trai
ning (PrivNav). 

Input: Machine learning algorithm 𝐿 , client set 𝐶 =ሼ𝐶ଵ, 𝐶ଶ,⋯ , 𝐶௡ሽ , local dataset 𝐷 = ሼ𝐷ଵ, 𝐷ଶ,⋯ , 𝐷௡ሽ ,  
server set 𝑆 = ሼ𝑆ଵ, 𝑆ଶ,⋯ , 𝑆௠ሽ , number of server   
nodes 𝑡′(2 ≤ 𝑡′ < 𝑚)  that can tolerate collusion,  
minimum number of clients 𝐾  for uploading para
meters per round, total number of training rounds 𝑅

Output: Trained model 𝑀 
01:  𝑆ଵ initializes the global model 𝑀 
02:    for 𝑟 ← 1 to 𝑅 
03:      for 𝐶௜ ∈ 𝐶 do 
04:        if 𝑟 = 1 
05:        Download the initial global model 𝑀 from 𝑆ଵ
06:        else 
07:        Download the share 𝑀∗,௝௥ିଵ  from 𝑆௜,௝ ∈ ሼ1,2,⋯ ,𝑚ሽ 
08:          𝑀௥ିଵ ← SecRec൫𝑀∗,ଵ௥ିଵ,⋯ ,𝑀∗,௠௥ିଵ൯ 
09:        end-if 
10:        local training 𝑀௜௥ ← (𝑀௥ିଵ, 𝐷௜) 
11:        clipping weights 𝑀௜௥ max(1, |𝑀௜௥| 𝐶⁄ )⁄  
12:        adding noise 𝑀௜௥ ← 𝑀௜௥ + noise(𝜀, 𝛿, 𝐶, 𝐾) 
13:        𝑡 ← 𝑡ᇱ + 1 
14:        computing shares ൫𝑀௜,ଵ௥ ,⋯ ,𝑀௜,௠௥ ൯ ← SecShr(𝑀௜௥,𝑚, 𝑡) 
15:        send 𝑀௜,௝௥  to 𝑆௜,௝ 
16:      end-for 
17:      for 𝑆௝ ∈ 𝑆 do 
18:        wait until enough parameters are collected to 

update the parameters 
19:        aggregate share 𝑀∗,௝௥ ← ൫𝑀௜భ,௝௥ + ⋯+𝑀௜಼,௝௥ ൯ 𝐾⁄  
20:      end-for 
21:    end-for 
22:  download shares 𝑀∗,௝ோ , recover 𝑀ோ 
23:  output 𝑀ோ 
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through secret recovery as 𝑐 ∑ 𝑥௜௡௜ୀଵ  , which ultimately 
yields 𝑐𝑥. Notably, since the parameter 𝐾 in Step19 is a 
constant value for the server, the computation for the aver-
age share can also be carried out locally. 

The resilience of Algorithm 1 to client disconnection is 
evident. Considering that the participating data nodes in the 
training process often consist of unstable mobile edge de-
vices, the privacy protection scheme must ensure the effec-
tiveness of the training process even when nodes experi-
ence periods of disconnection. In the context of Algorithm 
1, if a client becomes disconnected, it results in the absence 
of the share of the model update being sent to the server. In 
such scenarios, the client is treated as non-participating in 
the current round of training. Notably, since all shares are 
simultaneously transmitted to all servers after executing the 
SecShr algorithm, the algorithm assumes that no client can 
selectively send shares to specific servers. However, if such 
a situation occurs, the server can efficiently resolve it by 
conducting an additional round of communication. This ad-
ditional round would confirm the source client IDs for all 
received shares and subsequently intersect them when per-
forming the aggregation process. 

Additionally, PrivNav demonstrates compatibility with 
more intricate custom aggregation functions. While Fe-
dAvg utilizes a weighted average as the aggregation opera-
tion for parameters, more is needed to meet the demands of 
complex application requirements. For instance, to combat 
Byzantine attacks, some researchers have proposed the 
computation of the median among all client update values, 
which is then employed as the aggregation result. Unlike 
privacy-preserving schemes based on homomorphic en-
cryption or function encryption that solely support linear 
aggregation operations PrivNav enables the computation of 
any complex aggregation function 𝑔(𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௡) . This 
is achieved by redefining Step19 of PrivNav as 𝑀௝௥ ←SecComp(𝑔(𝑀௜భ,௝௥ ,⋯ ,𝑀௜಼,௝௥ )) , where the secure multi-
party computation protocol SecComp  may introduce ad-
ditional communication among servers. The volume and 
number of communication rounds in SecComp are influ-
enced by the specific aggregation function 𝑔. 

Lastly, a trusted center is often relied upon in existing 
federated learning frameworks. However, in this paper, us-
ing secure multi-party computation for parameter aggrega-
tion naturally extends to decentralized scenarios. In such 
scenarios, each party serves as a data node and a computa-
tion node, conducting local model training and assuming 
responsibility for secure parameter aggregation. Specifi-
cally, the parties involved are denoted as ሼ𝐶ଵ, 𝐶ଶ,⋯ , 𝐶௡ሽ =ሼ𝑆ଵ, 𝑆ଶ,⋯ , 𝑆௠ሽ , where 𝑚  equals 𝑛 . Adopting a (𝑛, 𝑛 )-
threshold secret sharing scheme ensures that each party is 
not required to place trust in other participants, and their 
respective parameters cannot be reconstructed. 

Ⅳ. SIMULATION AND RESULTS ANALYSIS 

This study primarily focuses on analyzing and evaluating 
PrivNav based on three key aspects: privacy, efficiency, and 
usability. To conduct the experiments, each client or server 
within the scheme is assigned an experimental node con-
sisting of an 8-core / 32GB cloud host instance. All nodes 
are configured to operate within the same subnet. As the ac-
curacy of the resulting model is independent of whether the 
nodes are situated in an actual distributed environment, a 
simulated federated learning training process involving 
multiple nodes is executed on a 16-core / 64GB cloud host. 
Local model training is implemented using PyTorch, while 
secure multi-party computation, differential privacy, and in-
ter-node communication are implemented using Python3. 
The MNIST dataset is selected as both the training and test 
sets and a convolutional neural network architecture is 
adopted for the training model. Specifically, the model 
comprises two convolutional layers with a 5×5 convolution 
kernel size, 10 and 20 output channels, a stride of 1, and 
valid padding. A 2×2 Max pooling layer and ReLU activa-
tion function are applied following the convolutional layers. 
Lastly, the model consists of two fully connected layers 
with dimensions of (320, 50) and (50, 10), respectively. Ad-
ditionally, a dropout of 0.5 is applied after the second con-
volutional layer and the first fully connected layer [27]. Fig. 
2 visually represents the model architecture and a single 
forward computation process. 

 
  

Fig. 2. Convolutional neural network architecture for in-car navigation system. 
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4.1. Efficiency Analysis 
The practicality of a federated learning scheme hinges on 

its operational efficiency. This study employs secure multi-
party computation utilizing secret sharing to safeguard the 
security of the aggregation process. Furthermore, differen-
tial privacy is employed to ensure the security of the aggre-
gation results. However, it should be noted that the trans-
mission of shared shares introduces additional communica-
tion overhead. Additionally, the steps involved in secret 
sharing, share calculation, secret recovery, model pruning, 
and noise addition introduce additional computational over-
head. 

To assess the practical execution efficiency of PrivNav, 
the FedAvg algorithm, eecFed [21], and MLFL [22] were 
employed as a benchmarks for comparison. The objective 
was to demonstrate that PrivNav does not suffer from sig-
nificant efficiency losses while enhancing privacy. Fig. 3 
illustrates the variation in cumulative time consumption of 
PrivNav, FedAvg, eecFed, and MLFL as the number of 
rounds increases. The experiments were conducted with 
different local dataset sizes for each client, namely 600, 
3,000, and 6,000. The remaining parameters were set as fol-
lows: 𝐵 = ∞, 𝐸 = 3, 𝑛 = 𝑘 = 10, 𝑚 = 2, and 𝑅 = 100. 

More efficient rounds of communication allow aggre-
gated models to be updated and deployed to vehicles more 
rapidly, enabling improved real-time detection and re-
sponse to emerging hazards. By reducing communication 
and computation loads, PrivNav allows resource-con-
strained in-car systems to dedicate more processing and 
bandwidth to safety-critical applications. The linear scala-
bility demonstrated by PrivNav supports exponential 
growth in connected vehicles without efficiency degrada-
tion, ensuring seamless safety systems as adoption in-
creases. Additionally, more efficient model retraining cy-
cles facilitate faster improvement and adaptation of auto-
mated vehicle control policies to address new hazards de-

tected by updated models. PrivNav's efficiency optimiza-
tions translate to quicker security updates, lower infrastruc-
ture burden, seamless scalability, and rapid control iteration 
as in-car navigation safety systems expand, directly streng-
thening detection precision, response times, and overall 
system robustness. 

With the growing size of the client dataset, the disparity 
in efficiency between PrivNav and FedAvg remains the 
same. This reduction can be attributed to the fact that as the 
client dataset expands, the increase in local training time 
becomes more significant compared to the communication 
time. Similarly, augmenting each client's local training 
rounds (𝐸) further narrows the efficiency gap between the 
two methods. Efficiency tests were conducted on more 
complex datasets and models to validate these assertions. 
The Cifar100 dataset was employed as the training dataset, 
while ResNet-50 served as the training model [28]. The pa-
rameters were set as follows: 𝐵 = ∞ , 𝐸 = 3 , 𝑛 = 𝑘 =10 , 𝑚 = 2 , and 𝑅 = 100 . The parameter values for 𝑁 
and 𝐸  were deliberately reduced to accentuate the effi-
ciency disparity between PrivNav and FedAvg. The results 
are illustrated in Fig. 4. Notably, when there are merely 250 
training samples in each client, the discrepancy in effi-
ciency between the two methods is distinctly observable. 
However, as 𝑁 increases to 500 and 1,000, the efficiency 
of the two methods becomes highly comparable. 

Subsequently, the scalability of PrivNav is evaluated by 
examining the efficiency variations under different scenar-
ios involving varying numbers of clients and servers. In 
these tests, each client's local dataset is held constant at 
3,000 samples, while the other parameters remain con-
sistent with the settings depicted in Fig. 3. The experimental 
outcomes are presented in Fig. 5 to demonstrate the effi-
ciency changes. 

Fig. 5(a) illustrates the average time consumption per 
round as the number of clients increases, with the number 

 
  

Fig. 3. Accumulated training time of two approaches under three
different datasets. 

 
  

Fig. 4. Efficiency comparison of two approaches under Cifar100 
+ ResNet-50 setting. 
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of servers fixed at 2. The graph shows that, apart from fluc-
tuations caused by network conditions, the average time 
consumption per round of PrivNav grows linearly with the 
number of clients. The rate of increase is approximately 
0.0125 (seconds per client), indicating that the overall effi-
ciency of the scheme remains within an acceptable range as 
the number of participating nodes increases. Fig. 5(b) 
demonstrates the average time consumption per round 
when the number of clients is fixed at ten, and the number 

of servers varies. In this experiment, the number of clients 
is not less than the number of servers (𝑛 ≥ 𝑚), and the net-
work conditions of both clients and servers are similar. Fig. 
5(c) illustrates that the average time consumption does not 
change significantly compared to the centralized scenario. 
As the number of participating nodes increases, the average 
time consumption remains relatively stable. 

The efficiency of PrivNav plays a crucial role in the de-
tection and control of in-car navigation safety systems. 
These systems necessitate timely and accurate detection 
and control mechanisms to respond to potential hazards ef-
fectively. The efficiency of the federated learning scheme 
directly impacts the speed at which the aggregated model 
can be updated and deployed to the in-car navigation sys-
tems. A more efficient scheme enables faster model updates, 
facilitating quicker detection and control of safety-related 
events. Efficient federated learning is particularly signifi-
cant for in-car navigation systems due to their limited com-
puting resources and operation under constrained network 
conditions. By optimizing the efficiency of the federated 
learning process, the scheme reduces the computational and 
communication overhead associated with model aggrega-
tion and updating. This optimization allows the system to 
utilize available resources effectively without excessive 
strain. PrivNav strongly emphasizes privacy preservation to 
safeguard sensitive data collected from in-car navigation 
systems during the learning process. By executing the fed-
erated learning algorithm efficiently, the scheme minimizes 
the exposure of raw data to external entities, thereby miti-
gating privacy risks. Consequently, users' trust and confi-
dence in the system are enhanced, fostering active partici-
pation. In-car navigation safety systems operate in large-
scale environments with numerous interconnected vehicles. 
The efficiency of the federated learning scheme influences 
its scalability to accommodate an increasing number of cli-
ents and servers. A highly efficient scheme can handle a 
more extensive system's growing computational and com-
munication demands, ensuring seamless and effective de-
tection and control across various vehicles. An efficient fed-
erated learning scheme facilitates real-time responsiveness, 
optimal resource utilization, enhanced privacy preservation, 
and scalability. These factors collectively contribute to the 
effectiveness and reliability of the detection and control 
mechanisms in in-car navigation safety systems. 

  
4.2. Usability Analysis 

The model's accuracy plays a crucial role in determining 
the usability of a federated learning scheme. In secure 
multi-party computation, computations are performed over 
finite fields or commutative rings. However, user data is 
typically represented using fixed-point numbers, requiring 

 
  

 
   

 
  

Fig. 5. Average training time for each round as number of cli-
ents/servers increases. 
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truncation during the computation process. Additionally, in-
troducing noise due to differential privacy mechanisms can 
also impact the accuracy performance of the model. This 
subsection focuses on conducting experiments to evaluate 
PrivNav's influence on the model's accuracy. Specifically, 
for each client, a local dataset consisting of 6,000 randomly 
selected samples is used (𝑁 = 6,000). The remaining pa-
rameters are set as follows: 𝐵 = ∞, 𝐸 = 3, 𝐶 = 10, 𝑛 =𝑘 = 100 , 𝑚 = 2 , 𝑅 = 100 , and 𝛿 = 0.0001 . These ex-
perimental settings allow for assessing how PrivNav affects 
the model's accuracy in a controlled environment. 

Table 2 presents the model test accuracy of both FedAvg 
and PrivNav after 100 rounds of communication, consider-
ing different privacy settings with overall privacy budgets 
of 1 and 0.5. Notably, when no noise is added, and data 
truncation is performed, the model's accuracy remains un-
affected. As the privacy parameter ε decreases, the degree 
of privacy protection the learning algorithm provides im-
proves, resulting in more significant amounts of added 
noise. Consequently, the model's accuracy gradually de-
creases, and even the convergence of the model may be im-
pacted. Fig. 6 provides insights into this relationship, 
demonstrating that when 𝜀  is less than 0.0005 and the 
noise level (𝛿) exceeds 0.29, the model's prediction accu-
racy is notably poor. Excessive noise significantly hinders 
the typical iteration of the model, leading to a failure in 
achieving convergence. However, within the 0.0005< 𝜀<0.0006, the model performance demonstrates significant 
improvement. As 𝜀  increases beyond 0.003, the model 
gradually stabilizes and attains the desired effect, indicating 
that the added noise no longer substantially hinders the 
model's convergence. 

PrivNav's high accuracy significantly impacts the detec-
tion and control of in-car navigation safety systems. In-car 
navigation safety systems rely on accurate and reliable de-
tection mechanisms to identify potential hazards and ensure 
timely control actions. By achieving high model accuracy 
through the federated learning scheme, these systems' de-
tection and control capabilities are greatly enhanced. A high 
accuracy model in the federated learning scheme enables 
more precise and reliable predictions, improving the sys-
tem's ability to detect safety-related events such as colli-
sions, obstacles, or hazardous road conditions. Accurate de-
tection allows the system to respond promptly, triggering 

appropriate control actions to mitigate or avoid potential 
risks. This contributes to enhancing overall safety for pas-
sengers and vehicles on the road. Moreover, the high accu-
racy of the model enhances the system's ability to differen-
tiate between normal driving conditions and abnormal or 
anomalous situations. This is particularly important for 
identifying critical events that require immediate attention, 
such as sudden lane departures, aggressive driving behav-
iors, or potential mechanical failures. By accurately detect-
ing such events, the system can activate appropriate control 
mechanisms, such as issuing warnings or adjusting vehicle 
settings, to ensure safe operation and prevent accidents. Ad-
ditionally, the high accuracy of the federated learning 
scheme improves the reliability of the system's predictions, 
reducing false positives and false negatives. This minimizes 
the occurrence of unnecessary control interventions or 
missed detection of actual safety threats, leading to a more 
efficient and effective overall detection and control process. 
The impact of high accuracy extends beyond the detection 
and control mechanisms themselves. It also fosters user 
trust and confidence in the in-car navigation safety system. 
When users have confidence in the system's ability to detect 
and respond to safety-related events accurately, they are 
more likely to rely on the system and follow its recommen-
dations. This promotes greater user acceptance and utiliza-
tion of the system, leading to improved overall safety out-
comes. In conclusion, the high accuracy achieved through 
PrivNav significantly enhances in-car navigation safety 
systems' detection and control capabilities. It enables pre-
cise and reliable event detection, differentiation of abnor-
mal situations, and reduces false alarms, improving overall 
safety, user trust, and system performance. 

   

Ⅴ. CONCLUSION 

In in-car navigation systems, this study provides a feder- 
ated learning strategy for deep learning that protects privacy. 

Table 2. Comparison of different approaches on model prediction 
accuracy. 

Methods Test accuracy 

FedAvg 97.12 

PrivNav 97.10 

PrivNav (𝜀 = 0.01) 96.59 

PrivNav (𝜀 = 0.005) 95.99 

 
  

Fig. 6. Test accuracy under different privacy-preserving level. 
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To protect the privacy of local data and computing pro-
cesses, the suggested scheme integrates secure multi-party 
computation with differential privacy techniques. By add-
ing perturbations to local models and securely sharing them 
with central servers, the scheme prevents unauthorized ac-
cess to sensitive information and malicious inference from 
shared data. The scheme also accommodates user dropouts 
and supports various aggregation functions. Furthermore, it 
can be extended to decentralized scenarios, eliminating the 
need for a trusted central authority. The experimental re-
sults demonstrate the effectiveness of PrivNav in preserv-
ing privacy and enhancing the accuracy of in-car navigation 
systems. By emphasizing privacy preservation, sensitive 
data collected from in-car navigation systems is safe-
guarded during learning. The high accuracy achieved 
through the federated learning scheme significantly im-
proves these systems' detection and control capabilities. It 
enables precise and reliable event detection, differentiation 
of abnormal situations, and reduces false alarms, ultimately 
enhancing overall safety, user trust, and system perfor-
mance. 

While there are limitations to consider, first, PrivNav as-
sumes the availability of a reliable and secure communica-
tion infrastructure. The efficiency and performance of the 
scheme may be affected in scenarios with limited network 
resources or high latency. Second, the scheme's scalability 
should be further investigated, especially when dealing 
with many participants or complex datasets. The scheme's 
robustness against sophisticated attacks and adversarial 
scenarios also requires further exploration. In future re-
search, addressing these limitations and exploring potential 
enhancements is essential. This could involve investigating 
communication-efficient protocols to improve the scheme's 
performance under constrained network conditions. More-
over, exploring techniques to enhance the scalability of the 
scheme and handle larger-scale deployments will be bene-
ficial. Additionally, advancing the security aspects of the 
scheme to withstand adversarial attacks and ensuring ro-
bustness will be crucial for real-world applications. 
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