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I. INTRODUCTION  

English language proficiency has become increasingly 
important in today's globalized world, where cross-cultural 
communication and international collaboration are vital for 
personal and professional success. Particularly, students in 
higher vocational education require strong English lan-
guage skills to thrive in their chosen fields, which often in-
volve interactions with international clients, colleagues, 
and partners [1]. In many industries, proficiency in English 
is a prerequisite for job opportunities and career advance-
ment. Whether in business, technology, healthcare, hospi-
tality, or any other field, communicating effectively in Eng-
lish opens doors to a broader range of opportunities [2]. It 
enables individuals to engage in global networks. Employ-
ers seek professionals who can confidently interact with di-
verse stakeholders and navigate international markets, mak-
ing English language proficiency a key asset in today's job 
market. 

Although traditional English teaching methods are valu-
able in providing a foundational understanding of the lan-
guage, they often need help to fully prepare students for 

real-world communication in higher vocational education. 
These methods typically rely on standardized curricula, tra-
ditional classroom settings, and one-size-fits-all instruc-
tional materials, which can limit their effectiveness in meet-
ing the specific needs and contexts of students pursuing vo-
cational careers [3-4]. 

The demands of real-world communication go beyond 
memorizing grammar rules and vocabulary lists; they in-
volve effective oral and written communication, presenta-
tion skills, negotiation abilities, and intercultural compe-
tence. Moreover, traditional classroom settings may only 
partially reflect the dynamic and diverse environments that 
students will encounter in their vocational careers. Class-
room interactions often involve limited opportunities for 
authentic language use and need more exposure to industry-
specific terminology, cultural nuances, and communication 
styles. Students need exposure to real-world scenarios, in-
teractive role-plays, and authentic materials that mirror the 
challenges they will face in their professional lives. Each 
vocational field has unique language requirements, and stu-
dents may require specialized instruction tailored to their 
chosen career paths [5]. A standardized curriculum may 
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need to sufficiently address these specific language needs 
and contexts, leading to a gap between classroom learning 
and real-world application. 

In English learning, real-time feedback is critical in help-
ing students improve their language skills. Traditional 
teaching methods often provide feedback after a delay, hin-
dering students' ability to correct mistakes and reinforce 
their learning immediately [6]. In today's digital age, the 
proliferation of connected devices and the exponential 
growth of data has led to new challenges and opportunities 
in computing. Edge computing has emerged as a promising 
paradigm that aims to address these challenges by bringing 
computation and data storage closer to the network's edge, 
near the source of data generation [7-8]. With edge compu-
ting, students can receive real-time feedback on pronuncia-
tion, grammar, vocabulary usage, and sentence structure. 
Reducing latency achieved through edge computing is par-
ticularly crucial for English learning. It enables students to 
correct mistakes promptly, reinforcing proper language us-
age and preventing the development of incorrect language 
habits. Students can receive instant feedback on their lan-
guage production, facilitating a more efficient learning pro-
cess. Additionally, edge computing allows for personalized 
and adaptive learning experiences. By leveraging data pro-
cessing and machine learning algorithms on edge devices, 
the system can adapt to individual students' needs and pro-
vide customized feedback and recommendations. Students' 
performance and progress can be analyzed locally on edge 
devices, ensuring the privacy and security of personal data. 

The reduced latency achieved through edge computing, 
mainly through edge caching, is significant for real-time 
English learning. Edge caching involves storing frequently 
accessed data closer to the edge devices, allowing quicker 
access and reducing the need to fetch data from distant serv-
ers [9]. Traditional approaches often rely on centralized 
servers or cloud-based solutions, which can introduce la-
tency due to network congestion or longer data retrieval 
times. This latency can negatively impact the learning ex-
perience, as delays in accessing materials and receiving 
feedback hinder students' ability to address their language 
learning need promptly. By implementing edge caching, the 
framework for real-time English learning can leverage the 
proximity of edge devices to provide instant access to learn-
ing materials [10]. Frequently used resources, such as mul-
timedia content, interactive exercises, language reference 
materials, and instructional videos, can be cached at the 
edge, reducing the time it takes for students to access them. 
It enhances the efficiency and responsiveness of the learn-
ing process, allowing students to engage with the materials 
without noticeable delays. Moreover, edge caching can im-
prove the real-time feedback mechanism in English learn-
ing. Students' performance data can be processed and ana- 
lyzed locally on edge devices as they interact with language 

learning applications or platforms. This analysis includes 
assessing pronunciation, grammar usage, vocabulary profi-
ciency, and comprehension. The feedback generated based 
on this analysis can be cached and delivered in real-time, 
providing students with immediate insights into their 
strengths and areas for improvement. The integration of 
edge caching within a framework for real-time English 
learning significantly enhances the learning experience by 
reducing latency, enabling quick access to learning re-
sources, and delivering immediate feedback [11]. By lever-
aging the proximity of edge devices, this caching mecha-
nism contributes to building a responsive and efficient 
learning environment that supports students in their lan-
guage acquisition journey. 

Early research on integrating edge computing in contexts 
like augmented reality, smart classrooms, and adaptive as-
sessments shows initial promise. However, comprehensive 
computational frameworks to unlock the potential of edge 
computing for transforming teaching, particularly in key ar-
eas like instantaneous feedback, remain open challenges. 
The motivation is to spark a broader discourse on edge-
based pedagogical innovations through an exemplar algo-
rithmic instantiation. Considering those mentioned above, 
the main contribution of this paper is that the adversarial 
autoencoders-based collaborative multicast proactive edge 
caching scheme is proposed to reduce latency and loss rate 
in higher vocational English teaching. 

The remainder of the paper is organized as follows. Sec-
tion 2 gives the related works. Section 3 proposes the ad-
versarial autoencoders-based collaborative multicast proac-
tive edge caching scheme. The simulation and results anal-
ysis is provided in Section 4. Lastly, Section 5 presents the 
conclusions. 

 

Ⅱ. RELATED WORKS 

2.1. Application of Edge Computing in English Teaching 
Edge computing is optimizing cloud computing systems 

by processing data at the network's edge near the data 
source, thereby reducing latency, bandwidth usage, and the 
amount of data sent to the cloud. In [12], the authors devel-
oped an autoencoder model using edge enhancement to 
tackle these issues and uncover the hidden communities in 
complex networks. In [13], the authors investigated a novel 
service architecture of traffic sensing based on mobile edge 
computing where collected data was pre-processed at the 
edge node and reconstructed at cloud servers, respectively. 
Notably, edge computing is helpful for real-time applica-
tions, such as video streaming, gaming, and language learn-
ing, where delay or lag can negatively impact user experi-
ence [14]. Edge computing can be used to create smart 
classrooms that can monitor student engagement, track pro- 
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gress, and provide personalized learning experiences [15- 
16]. For example, speech recognition can assess pronunci-
ation and provide real-time feedback, while facial recogni-
tion can monitor student engagement and focus. Virtual and 
augmented reality applications can significantly benefit 
from edge computing by reducing latency and providing 
smoother, more immersive experiences. These technologies 
can create immersive language learning environments that 
simulate real-life situations, making it easier for students to 
practice speaking and listening skills. Simultaneously, edge 
computing can be integrated into language learning apps to 
provide real-time feedback, personalized content, and of-
fline functionality, which can help students practice their 
skills on-the-go and receive immediate feedback without 
relying on a constant internet connection [17]. Additionally, 
edge computing can create adaptive assessments that adjust 
in real-time based on a student's performance. It can help 
teachers identify areas where students need more support 
and tailor their teaching accordingly [18-21]. 

In conclusion, edge computing has the potential to revo-
lutionize English teaching by providing faster response 
times, personalized learning experiences, increased security, 
reduced bandwidth and energy consumption, and offline 
functionality. By integrating edge computing into language 
learning applications and environments, educators can cre-
ate more engaging and effective learning experiences for 
their students. 

 
2.2. Edge Caching 

Edge caching is a mechanism used in edge computing 
that involves storing frequently accessed data closer to the 
edge devices, reducing the need to fetch data from distant 
servers. By caching popular content or resources at the net-
work's edge, edge caching improves the performance and 
responsiveness of applications and services [22]. Edge 
caching aims to minimize the latency and network conges-
tion that can occur when data needs to be retrieved from 
remote servers or the cloud. Instead of accessing centralized 
storage, edge devices can quickly retrieve cached data from 
nearby edge servers, resulting in faster response times and 
reduced delays [23-24]. Edge caching is particularly bene-
ficial in scenarios where real-time access to data is crucial, 
such as in real-time communication applications, streaming 
services, or content delivery networks. By bringing the data 
closer to the end users, edge caching reduces the time it 
takes to access and deliver content, improving the user ex-
perience and reducing network traffic. Furthermore, edge 
caching improves scalability and bandwidth utilization by 
offloading the centralized servers and distributing the com-
putational load [25]. It allows for efficient content distribu-
tion, as popular or frequently requested data can be cached 
at multiple edge locations, reducing the strain on the net- 

work and optimizing data transmission. Edge caching is vi-
tal in optimizing performance, reducing latency, and im-
proving the efficiency of edge computing systems. Using 
the proximity of edge devices and caching frequently ac-
cessed data enhances the responsiveness and reliability of 
applications, ultimately providing a better user experience. 
In [26], the authors proposed an alternating iterative algo-
rithm-based efficient algorithm called task caching and of-
floading (TCO). In [27], the authors proposed a cache de-
ployment strategy, i.e., large-scale WiFi edge cache deploy-
ment (LeaD). To solve the long-term caching gain maximi-
zation problem, they first group large-scale access points 
into appropriately sized edge nodes, test edge level traffic 
consumption stationary, sample enough traffic statistics to 
accurately characterize long-term traffic conditions, and 
then develop the traffic-weighted greedy algorithm. The au-
thors of [28] suggested a system incorporating blockchain, 
edge nodes, remote cloud, and Internet of Things devices. 
They created a novel algorithm for the CREAT system that 
used blockchain assistance to compress federated learning 
for content caching. 

  

Ⅲ. METHODOLOGY 

3.1. System Model 
This paper considers the scenario of cooperative caching 

of multiple small base stations 𝑆 under a macro base sta-
tion 𝑀. As shown in Fig. 1, it contains macro base station 𝑀 , small base stations 𝑆  and students 𝑈 . A set 𝑆 =ሼ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, ⋯ , 𝑠௄ሽ is included in the range covered by the 
macro base stations, where 𝐾 represents the total quantity 
of small base stations. The number of users presents within 
the coverage radius 𝑟 of the small base station 𝑠௄ is de-
noted by 𝑁_𝑠௄ . A Poisson distribution with parameter 𝜆 
models this quantity. 

 P൫𝑁௦಼൯ = ൫ఒగ௥మ൯ಿ_ೞ಼ே_௦಼! 𝑒ିఒగ௥మ, (1)
 

where 𝜆 denotes the mean student count per unit area. The 
interconnection between the small and macro base stations 
is established via optical fiber. The macro base station is 
endowed with the complete information of the small base 
station and is responsible for the regulation and manage-
ment of the small base station. 

The content requested by student 𝑢௠ belongs to the set 𝐶 = ሼ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, ⋯ , 𝑐ேሽ, and 𝑁 represents the contents' to-
tal number. Considering that both terminal and student 
equipment have specific cache capacity, V={Vc, Vm, Cs, 
Vu}is defined, which represent the storage capacity of the 
cloud, macro base station, small base station, and student, 
respectively. Since the distance of student 𝑢௠  obtaining 
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content from different places is different, the transmission 
latency in the system is assumed to be 𝑡 , 𝑡 =ሼ𝑡௟, 𝑡௦, 𝑡௠, 𝑡௖, 𝑡௦௦ሽ, which respectively represents the trans-
mission latency between student and local, small base sta-
tion, macro base station, cloud and the transmission latency 
between adjacent small base stations. For the request la-
tency of the student, only the transmission latency of the 
content is considered, so the latency of the student 𝑢௠ to 
get the content from locally is 0. However, the small base 
station is closer to the student. It is closer to the student than 
the cloud macro base station, so the transmission latency 
relationship satisfies 𝑡௟ = 0 < 𝑡௦ < 𝑡௠ < 𝑡௖ . Since the 
transmission latency between adjacent small base stations 
is 𝑡௦௦, the transmission latency between small base stations 𝑠௞భ and 𝑠௞మ is defined as ℎ𝑡௦௦, where ℎ is the number of 
hops traversed between small base station 𝑠௞భ  and 𝑠௞భ . 
Therefore, the present study defines the system's average 
latency 𝑇 as the mean value of the request latency of the 
students under each small base station. The request latency 
is defined as follows. 

 𝑇 = ଵே_௨ ∑ ∑ ൫𝑡௦,௠ + 𝑡௦,௦൯ே_௦಼௠ୀଵ௄௞ୀଵ . (2)
 

The variables in the equation are interpreted as follows: 𝑁_𝑢 denotes the aggregate count of students who are pres-
ently requesting content, 𝑡௦,௠  represents the request la- 

tency of the current small base station to the neighboring 
small base station or macro base station, and 𝑡௦,௦  repre-
sents the request latency of the student to the small base 
station to which they are affiliated. Since this paper realizes 
the prediction of content popularity at the macro base sta-
tion, the loss rate is defined as the ratio of the number of 
requests that the macro base station cannot process to the 
total number of student requests, denoted by ℒ = 𝑤௥ 𝑁_𝑢⁄ , 
where 𝑤௥ represents the number of requests that the macro 
base station cannot process. Consequently, pre-emptively 
allocating the widely popular content within a small base 
station can decrease the mean request latency 𝑇 of the sys-
tem and efficiently reduce the system's loss rate ℒ. 
  
3.2. Adversarial Autoencoders-Based Collaborative Mul-

ticast Proactive Caching 
3.2.1. Student Grouping 

In the conventional edge caching network, each base 
station usually caches the global or local most popular con-
tent independently and transmits it unicast. However, in the 
actual scenario, due to the different preferences of students, 
the globally popular content often only represents the pref-
erences of some students. Therefore, caching the most pop-
ular content at each base station only meets the needs of 
some students but also causes redundancy and reduces the 
utilization of cache resources. To meet the needs of differ- 

 
  

Fig. 1. Overall framework. 
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ent students, the average latency of the system is shortened, 
and the loss rate is reduced. We study from the students' 
point of view, predict the local popular content, and con-
sider the cooperative caching among nodes and the use of 
multicast for distribution. The adversarial autoencoders-
based collaborative multicast proactive caching (AAE-
CMPC) algorithm consists of three parts: student grouping, 
cache content prediction, and content replacement and dis-
tribution. 

Since different students have certain similarities in some 
preferences, this paper defines the student characteristics 𝑄௨ = ൛𝑞௨భ, 𝑞௨మ, 𝑞௨య, 𝑞௨ర, 𝑞௨ఱൟ  according to the student's 
gender, age, major, learning style, and type of terminal 
equipment. Because the k-means algorithm has a general 
clustering effect and ill-conditioned initialization problems 
on non-convex space, this paper uses the k-means++ algo-
rithm to divide students into 𝐼 cluster centers [29]. It de-
fines 𝐸 as the set of cluster centers, 𝐸 = ሼ𝑒ଵ, 𝑒ଶ, 𝑒ଷ, ⋯ , 𝑒ூሽ. 
The k-means++ algorithm works as follows. First, a point 𝑢௠ is randomly selected as the cluster center 𝑒ଵ, and then 
the feature distance between other unselected points 𝑢௠′ 
and 𝑒ଵ is calculated. Euclidean distance expresses the fea-
ture distance, and the calculation formula is shown in equa-
tion (4). The point farthest from 𝑒ଵ is chosen as 𝑒ଶ. And 
so on, calculate the minimum feature distance between each 
unselected node 𝑢௠′  and the selected 𝑖  cluster centers, 
and then take the node with the most considerable minimum 
feature distance among all unselected nodes um' as the next 
cluster center 𝑒௜ାଵ, which is calculated as follows. 

 𝑒௜ାଵ = arg max௠∈ሾଵ,ெሿ ൬ min௝ୀଵ→௜ 𝑞൫𝑢௠, 𝑢௝൯൰. (3)
 𝑞൫𝑢௠, 𝑢௝൯ = ቛ𝑞௨೘ − 𝑞௨ೕቛଶ. (4)
 

After all cluster centers are selected, the characteristic 
distance between student um and each cluster center is cal-
culated, and the cluster center 𝑒௜ with the minimum dis-
tance is taken as the cluster to which student 𝑢௠ belongs. 
The calculation for 𝑒௜ is as follows. 

  𝑒௜ = arg min௜∈ሾଵ,ாሿ ൬ቛ𝑞௨೘ − 𝑞௨ೕቛଶ൰. (5)

   

When all students have finished the calculation, each 
group's new cluster center 𝑢௘′ is recalculated. 

  𝑢௘′ = ଵே_௘ᇱ ∑ 𝑞௡ே_௘ᇱ௡ୀଵ , (6)

   

where 𝑁_𝑒′ denotes the total number of students in the old 
cluster center 𝑒′. Equations (5) and (6) are repeated until 
the cluster centers are stable and unchanged. At this point, 
the classification is finished. Students can be divided into 

groups 𝐴 , the group set 𝐻  can be expressed as 𝐻 =ሼℎଵ, ℎଶ, ℎଷ, ⋯ , ℎ஺ሽ, and each student 𝑢௠ belongs to only a 
specific group set. 

The standard k-means++ algorithm clusters students 
based on intrinsic features like demographics and learning 
styles. However, dynamic factors like academic perfor-
mance, assignments, grades, and learning analytics offer 
additional clustering dimensions in enhancing English 
teaching through edge computing. Rather than just group-
ing students on static traits, incorporating multivariate aca-
demic data could better capture emerging language abilities, 
knowledge, and skills. Assessment results across reading, 
writing, listening, and speaking categories could be inte-
grated into the distance calculations when identifying clus-
ter centers in k-means++, ensuring student groupings adapt 
to competency development across diverse aspects of Eng-
lish language learning. Additionally, performance on per-
sonalized vocabulary apps, AI-driven writing evaluations, 
and speech recognition tools could provide regular inputs 
to the algorithm for responsive cluster updating keyed to 
individual progress. With edge nodes collecting and trans-
mitting rich performance data, k-means++ could leverage it 
via academic-oriented proximity metrics between student 
data points. 

The cluster assignments in k-means++ could be updated 
every two weeks based on the latest vocabulary app usage 
patterns, writing sample analytic scores, speech recognition 
metrics, and overall grades. As students demonstrate devel-
opment across reading, writing, listening, and speaking 
skills, their relative peer groupings would adapt accord-
ingly based on refreshed statistical proximity. Advanced 
students may migrate into clusters indicative of their bur-
geoning capabilities to access more challenging content. 
Peers exhibiting slower growth could get reassigned, main-
taining parity. Rather than one-time grouping, cyclical up-
dates would ensure students enter learning communities 
congruent with their current competency levels. 

The k-means++ algorithm conventionally clusters stu-
dents based on individual traits and performance data. 
However, there is potential to advance clustering in peer 
learning by incorporating team dynamics. Alongside attrib-
utes like grades, prior learning styles (e.g., visual, verbal, 
logical) could provide inputs to optimize group composi-
tions for collaborative learning scenarios. The cluster for-
mation process in k-means++ could assess students on di-
mensions like conceptual visualization skills, oral discus-
sion abilities, written comprehension aptitudes, and logical 
reasoning strengths, which would map profiles across 
learning modalities. Some groups consolidate strong visu-
alizers and logical thinkers to synthesize creative ideas. 
Others may combine analytical reviewers and eloquent 
speakers to craft high-impact presentations. 
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The cluster distance computations could emphasize vo-
cabulary or pronunciation scores more heavily for specific 
students needing additional development in those areas. For 
other students, dimensions like sentence construction and 
logical reasoning could contribute more to distance scoring 
based on their progress, which would entail maintaining 
mastery profiles across knowledge dimensions for each 
learner. With localized processing and low latency data 
transfer, the edge computing infrastructure could readily 
sustain such personalized analytics. As students evolve dif-
ferentially across modalities like reading versus writing, 
dynamically tuned distance metrics could tighter cluster 
peers with complementary competencies. It could promote 
more customized peer learning aligned to intricacies in 
mastery trajectories. Explaining how to map weights across 
scoring dimensions to individual learning objectives algo-
rithmically offers research directions. With edge nodes con-
tinually updating progress data, responsive weight tuning 
and cluster re-computations become feasible. 

Clustering students into groups with sizes aligned to the 
cache memory of edge nodes could enable efficient content 
multicasting. Larger clusters may overburden cache storage 
and undermine low-latency transmission. Smaller group-
ings could underutilize available edge resources, leading to 
redundancies. Exploring computational techniques to dy-
namically size clusters based on edge infrastructure con-
straints provides research potential. K-means++ computa-
tions could assess edge node attributes like CPU capacities, 
co-located cache sizes, and wireless bandwidth to statisti-
cally derive apt peer group sizes, maximizing on-device 
computations. The low latency data transfers facilitated by 

edge networks can sustain the reliable gathering of such in-
frastructure specifications. Additionally, the algorithm 
could evaluate the versatility of emerging edge hardware 
like MMPUs and shape cluster dimensions accordingly to 
harness specialized processing. 

 
3.2.2. Cache Content Prediction 

In terms of cache content prediction, because AAE can 
learn the potential characteristics of students, it can accu-
rately predict the content that the grouped user group may 
request in the future according to the historical request rec-
ords of students (students' preferences). Therefore, this pa-
per will predict the content popularity of each group based 
on AAE. 

AAE is a probabilistic autoencoder (AE) that combines 
generative adversarial networks (GAN) and variational au-
toencoders [30]. Its model architecture consists of two parts 
(Fig. 2). (i) The top half is AE, which can learn the latent 
variable 𝑧 (𝑧 represents the latent features of the student) 
in an unsupervised manner. (ii) The bottom half is GAN, 
which discriminates whether the sample 𝑧  is from the 
prior distribution 𝑝ሺ𝑧ሻ or the latent variable generated by 
AE. 

The training of AAE involves a two-stage process of re-
construction and regularization, whereby the architecture of 
AE is augmented with a GAN to enable AE to function as a 
generative model within GAN. During the reconstruction 
phase, AE is employed to revise the encoder to minimize 
the reconstruction error of 𝑿. First, and the hidden variable 𝑧  is generated by the generative network 𝑞ሺ𝑧|𝑥ሻ . 𝑧  re-
constructs 𝒀 through the decoder 𝑝ሺ𝑥|𝑧ሻ, and the loss of 

 
  

Fig. 2. Architecture of AAE. 
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the reconstruction of 𝑿 and 𝒀 is calculated. In the regu-
larization stage, the discriminator first identifies whether 
the sample 𝑧 is from the generated sample or the prior dis-
tribution to update the parameters. Then, to deceive the dis-
criminator 𝐷, generator 𝐺 will also be updated. Through 
the mutual game between the generator 𝐺 and the discrim-
inator 𝐷, the output of the discriminator 𝐷 is maximized, 
and the output of the generator 𝐺  is minimized, so the 
min-max game between 𝐺  and 𝐷  can be expressed as 
follows. 

  minீ max஽ 𝐸௫~క೜ሺೣሻሾlog 𝐷ሺ𝑥ሻሿ + 𝐸௭~௣ሺ௭ሻ ቂlog ቀ1 − 𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ, (7)
   

where 𝐸  denotes the desired distribution and 𝜉௤ሺ௫ሻ  de-
notes the input data distribution. 

During the training process, the output of the discrimina-
tor is transmitted to the encoder through the adversarial net-
work so that the hidden variable 𝑧 is close to the distribu-
tion of 𝑝ሺ𝑧ሻ. The weights of discriminator 𝐷 are adjusted 
by backpropagation while the parameters of generator 𝐺 
are updated. The above process is repeated, and when the 
training is finished, the autocoded decoder is defined as the 
generative model. The prior distribution 𝑝ሺ𝑧ሻ is mapped 
to the data distribution 𝜉௤ሺ௫ሻ , so the adversarial autoen-
coder can achieve 𝑞ሺ𝑧ሻ matching 𝑝ሺ𝑧ሻ in the regulariza-
tion stage, where 𝑞ሺ𝑧ሻ is the aggregated posterior distri-
bution, which is defined as follows. 

  𝑞ሺ𝑧ሻ = ׬ 𝑞ሺ𝑧|𝑥ሻ 𝜉௤ሺ௫ሻ d𝑥. (8)
  

The loss function for the discriminator in training is de-
fined as follows. 

  ℒ஽ = − ଵ௕ ∑ log൫𝐷ሺ𝑧ᇱሻ൯௕௔ୀଵ + log൫1 − 𝐷ሺ𝑧ሻ൯, (9)
  

where 𝑏 is the size of the batch data volume for each net-
work training, the adversarial generator loss function is 
given below. 

  ℒீ = − ଵ௕ ∑ log൫𝐷ሺ𝑧ሻ൯௕௔ୀଵ . (10)
  

Each group of student history search content matrix 𝑿 
is used as the input of the training model. 𝑿 consists of 
sample variables 𝑥 , 𝑿 ∈ 𝑁஺×ே , where 𝐴  and 𝑁  denote 
the number of user groups and the amount of requested con-
tent. In this case, the content requested by the user group ha 
is marked as interested. Additionally, the content of a stu-
dent's future request is also related to the student's prefer-
ence. To predict the content that students with different 
preferences may request, this paper takes the preference in-
formation as an additional matrix of the input information 𝑿 . Since unknown content and uninteresting content are 
mixed in the unrequested content, it is challenging to dis-
tinguish uninteresting content. However, marking all unre- 

quested content as uninteresting is a bias prediction. There-
fore, this paper uses random marking to mark whether the 
unknown content is of interest, and the probability of ran-
dom marking is related to the student's preference for the 
content. AAE learns 𝑧 from the input matrix 𝑿, and then 
the prediction matrix 𝒀 is obtained from 𝑧. The contents 
are ranked according to the probability predicted by matrix 𝒀, and the highest-ranked contents are deployed to small 
base stations and macro base stations. 

In the AAE prediction model, unlabeled content poses 
challenges regarding categorization as interested or uninter-
ested data points. Simply encoding unknown content as un-
interested can bias the model. To handle this, a probabilistic 
marking idea is proposed. The core premise is that for any 
student, the likelihood of unfamiliar content being relevant 
to them could be estimated from their preferences. For in-
stance, a learner engaging frequently with science-related 
materials could imply a higher probability of unencoun-
tered science content being attractive to them. Similarly, a 
student with arts and design inclinations could have a 
higher probability of unfamiliar arts content being deemed 
captivating. In essence, individual interests and patterns of 
prior content interactions can guide likelihood estimates for 
categorizing unlabeled content. 

Computationally, this translates to a randomized marking 
approach that assigns interest tags with probabilities tied to 
user preferences. Therefore, students would have content 
and a probability distribution over interest categories de-
rived from their usage history. Then, unfamiliar content 
would get allocated randomized tags based on those cate-
gory-wise probabilities. Effectively, this statistical supple-
mentation allows some guesswork in gauging interest in 
new content by deriving odds from existing consumption 
behaviors. Caveats exist regarding heaping assumptions 
from limited user histories that warrant investigation before 
substantiating the approach as robust. However, direction-
ally, the probabilistic marking paradigm offers the potential 
to improve the modeling of unlabeled data. The essence re-
lies on extrapolating user content preferences onto unex-
plored materials through randomized interest assignments 
guided by probabilities. 

 
3.2.3. Content Replacement and Distribution 

Regarding content caching and distribution, it can be ob-
served that the transmission latency between small base sta-
tions is significantly lower than the transmission latency to 
macro base stations due to the smaller transmission distance 
between small base stations in comparison to the distance 
between small base stations and macro base stations [31]. 
Therefore, this paper will combine the cooperation between 
small base stations and multicast content transmission to 
achieve the minimum average latency of the system. 
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Through the prediction of AAE, the request probability ma-
trix 𝒀 of each content for each group ℎ௔ can be obtained, 
and the request probability of each content is superimposed 
and ranked. Then the request probability is sequentially 
considered to place the position from high to low. The 
placement rules are as follows: First, the request probability 
of requesting the popular content 𝑐௡  can be obtained by 
prediction, and the small base stations requesting the most 
popular content 𝑐௡ form a set, and the node with high re-
quest probability among the small base stations requesting 
the content 𝑐௡ is taken as the source node, and the other 
nodes in the set are taken as the destination nodes. Trans-
mitting data from a source node to multiple destination 
nodes is called a multicast tree. Additionally, the transmis-
sion from a small base station to the user end is also con-
ducted in a multicast manner. Finally, the node with the 
minimum average request latency from the current position 
to all requesting users and sufficient storage resources is se-
lected as the deployment location of 𝑐௡. Therefore, the op-
timal problem with the average request latency of the sys-
tem as the optimization objective under the cooperative 
multicast scheme can be defined as follows. 

  

. (11)

  𝑡௞భ,௥೙ = max൛𝑡௞భ,௥೙ଵ , 𝑡௞భ,௥೙ଶ , ⋯ , 𝑡௞భ,௥೙௃ ൟ , 𝑛 = 1,2,3, ⋯ , 𝑁. (12)
  𝐽 + 1 ≤ 𝐾. (13)
  ∑ 𝛾௞భ,௡௄௞ୀଵ = 1, 𝑛 = 1,2,3, ⋯ , 𝑁. (14)
  ∑ 𝛾௞భ,௡ே௡ୀଵ ≤ 𝑉௦ೖభ , 𝑘ଵ = 1,2,3, ⋯ , 𝐾. (15)
  𝛾௞భ,௡ = ሼ0,1ሽ. (16)
  𝑡௛ೕ,௨೘ = ൜𝑡௦, 𝑐௡ ∈ 𝑦ଵ ∪ 𝑦ଶ ∪ 𝑦ଷ0, 𝑐௡ ∈ 𝑣௨ . (17)
  

In equation (11), 𝑁_𝑢  represents the total number of 
user requests at the current time, 𝑁_𝑠  represents the top 𝑁_𝑠 of all content popularity sorted from high to low, and 
its value is equal to the sum of the capacity of all small base 
stations. Equation (12) reflects the maximum latency expe-
rienced by the source node's small base station while com-
municating with all the small base station nodes of the des-
tination. Per equation (13), the summation of the number of 
small base stations requesting content 𝑐௡ and the number 
of nodes placing content 𝑐௡  must not exceed the total 
count 𝐾 of small base stations. Due to the limited storage 
resources of small base stations, this paper considers the co-
operation of each small base station to implement caching 
to make full use of the storage containers of each small base 
station and reduce redundancy and loss rate. Equation (14) 
indicates that only one copy of each content is cached in the 

system. Equation (15) represents the capacity limit of each 
small base station; Equation (16) represents the deployment 
matrix of small base stations. When 𝛾௞భ,௡ = 1, the small 
base station 𝑠௞ caches the content 𝑐௡; otherwise, it does 
not cache. The transmission latency for cases where the re-
quested content is located in either the local or small base 
station is expressed by equation (17). To reduce the frequent 
requests for the small base station, this paper divides the 
storage area of the small base station into three parts where 𝑦ଵ is the main buffer, which is used to cache the content 
deployed by the ant colony algorithm, and 𝑦ଶ is the high-
speed buffer, which is used to store and update the content 
of each request. The next time the content in 𝑦ଶ is reac-
cessed, the content will be moved to the 𝑦ଷ  hot cache. 
When 𝑦ଷ reaches its capacity limit, it will be replaced ac-
cording to the request frequency. 

The essence of solving 𝛾௄,௡  is the constrained 0−1 
knapsack problem, a classical NP-Hard problem. If solved 
directly, its time complexity is too large, but the intelligent 
optimization algorithm can solve this problem well. The ant 
colony algorithm has a robust global search ability com-
pared with other intelligent optimization algorithms. It 
adapts to the changed environment through cooperation be-
tween ants, thereby increasing the probability of finding the 
optimal global solution. Therefore, this paper will use the 
ant colony algorithm to solve the deployment matrix. 

The ant colony algorithm is derived from an algorithm 
obtained by observing the foraging process of ants [32]. 
Studies have shown that ants choose the forward path in 
searching for food by the solubility of pheromone on the 
path and release pheromone on the selected path. Because 
pheromones will evaporate with time, and ants choose the 
following path by sensing the strength of pheromone con-
centration, the system will gradually stabilize from the ini-
tial random path search to the shortest path. The conven-
tional ant colony algorithm is designed to pursue a single 
target, necessitating a substantial number of iterations. The 
AAE-CMPC scheme proposes a method for optimizing 
multi-objective search and enhancing iteration speed by 
considering small base stations caching content 𝑐௡  as caves 
and small base stations requesting content 𝑐௡ as food. 

To avoid the solution falling into the local optimum, 
when the ant is located at the current node 𝑖, the pseudoran-
dom proportional state transition rule is used to select the 
next node 𝑗 to increase the probability of choosing a ran-
dom path. 

 𝑗 = ൝arg max௨∈ே೔൛𝜀ሺ𝑖, 𝑢ሻఈ𝜂ሺ𝑖, 𝑢ሻఉൟ , 𝑔 ≤ 𝜃𝑃௜௝ others. (18)

 𝑃௜௝ = ൝ ఌሺ௜,௝ሻഀఎሺ௜,௝ሻഁ∑ ఌሺ௜,௨ሻഀఎሺ௜,௨ሻഁೠ∈ಿ೔ , 𝑗 ∈ 𝑁௜0 others, (19)
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where 𝑔  is a random number with uniform ሾ0,1ሿ  distri-
bution, and 𝜃 is a given parameter that determines the ex-
ploration and exploitation weights (𝜃 ∈ ሾ0,1ሿ). The selec-
tion rule of 𝑃௜௝  is shown in equation (19), where 𝜂ሺ𝑖, 𝑗ሻ 
represents the heuristic information from node 𝑖 to node 𝑗, 
generally taking the reciprocal of the distance between node 𝑖 and 𝑗, and the reciprocal of the delay. 𝑁௜ is the set of 
following alternative nodes, 𝜀ሺ𝑖, 𝑗ሻ  represents the phero-
mone concentration from node 𝑖 to 𝑗, the initial value is 
set to 1, and the rule for each update is shown in equation 
(20). 𝛼  and 𝛽  denote the weight parameters of phero-
mone and heuristic information, respectively, which deter-
mine the proportion of 𝜂ሺ𝑖, 𝑗ሻ and 𝜀ሺ𝑖, 𝑗ሻ in the decision-
making process. According to equation (19), when more 
pheromones are on the path, and the distance is short, the 
probability of selecting this path will be more significant. 

Pheromone updates are divided into two types: the local 
pheromone update and the global pheromone update. The 
local pheromone's update rule is that the ant has chosen this 
path and released the pheromone on this path. Due to the 
volatility of the pheromone, the update rule of the local 
pheromone is shown in equation (20). 

  𝜀ሺ𝑖, 𝑗ሻ ← ሺ1 − 𝜓ሻ𝜀ሺ𝑖, 𝑗ሻ + 𝜓∆𝜀ሺ𝑖, 𝑗ሻ. (20)
  ∆𝜀ሺ𝑖, 𝑗ሻ = ቊ൫𝐿௜,௝൯ିଵ, 𝑗 ∈ ሼtargetሽ0 others , (21)
  

where 𝜓  is the volatilization factor of pheromone, 0 <𝜓 < 1 . ∆𝜀ሺ𝑖, 𝑗ሻ  is the local pheromone update value of 
path ሺ𝑖, 𝑗ሻ, and the calculation rule is given in equation (21). 𝐿௜,௝ is the path length from current node 𝑖 to next node 𝑗. 
When the ant finds the destination node, or there is no next 
node to choose from, the additional update rule is shown in 
equation (22). 

 𝜀୮ୟ୲୦ = ቊ𝜀path + ∆𝜀ሺpathሻ, if findሺ1 − 𝜓ሻ𝜀୮ୟ୲୦ others, (22)

  

where find  indicates that the destination node has been 
found and the reward pheromone has been added to the 
whole path. At this point, the pheromone evaporation mech-
anism is performed on the entire path to avoid selecting this 
path again. 𝜀୮ୟ୲୦ denotes the path traversed from the start-
ing node to the current node, and ∆𝜀ሺpathሻ is the phero-
mone of path reward. 

In the content distribution phase, students 𝑢௠  request 
different content, and the small base station distributes the 
content to users according to the situation requested by stu-
dents. When the student 𝑢௠ requests the content 𝑐௡, if the 
memory 𝑉௦  of the affiliated small base station does not 
contain the content 𝑐௡, the content 𝑐௡ is obtained through 
collaboration between the small base stations or the macro 

base station. If 𝑉௦  contains content 𝑐௡  or has acquired 
content 𝑐௡, the requested content 𝑐௡ is distributed to the 
requesting student multicast. Since each student um be-
longs to a group ℎ௔, if the content 𝑐௡ requested by student 𝑢௠ is the most popular content in the ℎ௔ group, the con-
tent 𝑐௡ is actively cached to the student 𝑢௠ that has not 
sent the request at the current time in the ℎ௔ group by mul-
ticast, instead of actively caching in the off-peak traffic pe-
riod. In this way, it realizes active caching and saves energy. 
If the student capacity 𝑉௨ reaches the upper limit, the con-
tent is replaced according to the popularity of the content. 

The ant colony algorithm used for content caching and 
distribution has a tradeoff between exploitation and explo-
ration when ants traverse paths to place content across edge 
nodes. Exploitation leverages learned knowledge to opti-
mize placements based on past information. Exploration in-
volves some degree of randomization to discover better so-
lutions. To balance this, a pseudo-random proportional tran-
sition rule is introduced. The core idea was to incorporate 
some degree of arbitrary path probabilistically transitions to 
inject exploration amongst the exploitation-focused phero-
mone-driven walks. 

To minimize latency, the content caching scheme allo-
cates predicted popular content across distributed edge 
nodes. The multivariate allocation for optimizing caching 
locations is non-convex, combinatorial, and NP-hard. Sim-
ple greedy heuristics get trapped in local optima. Genetic 
algorithms require prohibitive cross-over computations. 
However, ACO offers several advantages aligned to the 
caching specification without the downsides. First, ACO al-
lows adaptive discovery of globally optimal solutions via 
simulated ant walks guided by accumulating pheromone 
traces towards reward spots, which handles non-convex ob-
jectives. Second, the probabilistic transition function bal-
ances focused local search with exploratory random walks 
to avoid entrapment. Next, concurrent, collaborative walks 
parallelize evaluations to improve efficiency. The phero-
mone evaporation mechanism also promotes diversity. Fi-
nally, incremental computations during ant trails make it 
scalable for combinatorial problems. These adaptation 
characteristics, multi-objective search efficiency, random-
ness injection, and computational parallelism tailor ACO 
for optimized edge caching distributions versus alternatives. 
The ants probabilistically transitioning between nodes 
based on distance-latency pheromone concentrations can it-
eratively discover superior allocated configurations. 

Within the AAE-CMPC edge caching framework, the 
key purpose of the AAE model is to predict content popu-
larity for specific student groups by leveraging their histor-
ical interactions. The input to the AAE model is a matrix 
representing previous content requests by various student 
groups over time. Encoded as matrices, this interaction data 
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trains the adversarial autoencoder in an unsupervised man-
ner to learn latent representations reflecting content prefer-
ence patterns for different student clusters. 

The encoder module in the trained AAE model captures 
intrinsic content preferences and taste dimensions based on 
past consumption history. The decoder then uses these la-
tent features to reconstruct likely content affinity distribu-
tions for targeted user groups. Therefore, the trained AAE 
model can predict preferences and probable content re-
quests for new students mapped to specific clusters by uti-
lizing the encoded latent patterns learned from past obser-
vations. 

These content popularity predictions, encoded as request 
probability distributions over content catalogs for student 
groups, become inputs for the ant colony edge caching op-
timization. Computationally, the AAE model provides the 
predictive analytics to determine what content to cache 
where based on group and content latent dimensions de-
rived through adversarial reconstruction mechanisms. 

 

Ⅳ. SIMULATION AND RESULTS ANALYSIS 

4.1. Parameters Setting 
The simulation scenario comprises a singular content 

server, a solitary macro base station, ten small base stations, 
and a group of students. The simulation environment used 
in this study is founded on the simulation platform de-
scribed in the reference [33]. This paper adds small base 
station equipment while retaining some parameters accord-
ing to the actual scene. Assuming that the size of the trans-
mitted content is 6 MB, the transmit rate between the stu-
dent and the small base station is 2 MB/s, the transmit rate 
from the student to the macro base station is 1.2 MB/s, the 
transmit rate from the student to the cloud is 1 MB/s, and 
the transmit rate between adjacent small base stations is 24 
MB/s. Therefore, the transmission latency between differ-
ent terminals is 𝑡௟ = 0 , 𝑡௦ = 3 , 𝑡௠ = 5 , 𝑡௖ = 6 , and 𝑡௦௦ = 0.25, respectively. Through multiple simulations and 
comparison of loss functions with different values, the final 
number of groups 𝐴 = 20 is taken. The key simulation pa-
rameters are described in Table 1. 

Regarding content prediction, the content requested by 
users and the dataset for AAE training come from Mov-
ieLens 1M Dataset, which includes 3,883 movies, 6,040 us-
ers, and 1,000,209 user ratings [34]. To ensure sufficient it-
erations, this paper preprocesses the original data to delete 
users with less than 50 user records. The training and pre-
diction of AAE are implemented based on PyTorch. Re-
garding the parameter design of the ACO algorithm, the 
choice of pheromone and heuristic factor, as well as 𝜃, de-
termines whether the problem of premature stagnation or 
falling into local optimum will occur during the exploration 

process. According to repeated experiments and compari-
sons, this paper sets 𝛼 = 1 , 𝛽 = 5 , 𝜓 = 0.1 , and 𝜃 =0.3 . In the whole simulation process, the essential infor-
mation and preference information of each user are derived 
from the data of real users. Each requested content will ran-
domly request content in its preference domain. To better 
simulate the actual situation, whether the user requests at a 
specific moment is also random. 

 
4.2. Results Analysis 

To verify the role of collaboration and multicast in edge 
caching, this paper first evaluates whether random caching 
(RC) adopts four strategies combining collaboration and 
multicast, i.e., (i) No collaboration and multicast (RC-N). 
(ii) Only collaboration (RC-C). (iii) Only multicast (RC-M). 
(iv) Collaboration and multicast (RC-CM). The users in the 
simulation use the first 500 users in the MovieLens 1 M 
Dataset, the storage capacity of the macro base station is 
200, and the number of iterations is 50. The simulation of 
its execution time and the system average request latency is 
shown in Fig. 3. To illustrate the changes in the four strate-
gies with the number of users, based on the above simula-
tion, this paper makes the number of users change from 0 
to 2,000, increases 40 users each time, and iterates 50 times 
each time and calculates the average of the results after each 
iteration. Fig. 4 depicts the results of the simulation. 

Fig. 3 shows that collaboration and multicast schemes 
can reduce the average transmission latency of the system. 
The mean value of each group of data was calculated. The 
results showed that the transmission latency of the collabo-
rative strategy was reduced by 0.13 s while using the mul-
ticast strategy resulted in a decrease of 0.08 s. This is be-
cause the essence of collaboration is to jointly consider and 
cache the adjacent small base stations so that the storage  

Table 1. simulation parameters. 

Parameter Value 
Number of small base stations 10 
Number of macro base stations 1 

Content server 1 
Number of users Varied 

Content size 6 MB 
Student to small base station rate 2 Mbps 
Student to macro base station rate 1.2 Mbps 

Student to cloud rate 1 Mbps 
Inter-base station rate 24 Mbps 

Student to small base station latency 3 ms 
Student to macro base station latency 5 ms 

Student to cloud latency 6 ms 
Inter-base station latency 0.25 ms 
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capacity of the adjacent small base stations can be shared, 
which is equivalent to increasing the storage capacity of the 
current small base station, so the average latency of the sys-
tem is reduced. As illustrated in Fig. 3, the multicast strate-
gy's efficiency could be better than that of the collaborative 
strategy. The result is consistent with real-world scenarios, 
where the likelihood of multiple users concurrently request-
ing identical content is low, thereby rendering the impact of 
multicast less pronounced. Fig. 4 illustrates that the average 
latency of the multicast and collaboration strategies inter-
sect as the number of users increases, with the collaborative 
strategy's impact being surpassed by that of the former. This 
is because as the number of users increases, the probability 
that different users will request the same content increases, 
so the multicast strategy performs better. Additionally, it 
can be seen from Figs. 3 and 4 that the effect of using a 
random caching algorithm is poor, and the average trans-
mission latency is still above 5 s; that is, most of the re-
quested content needs to be obtained from the cloud. 

To verify the effect of the proposed proactive caching 
scheme combining AAE content prediction and multicast 
on reducing the average request latency, this paper will re-
peat the first simulation and replace the RC algorithm in the 
simulation with the AAE-CMPC algorithm, as shown in Fig. 

5. While AAE-CMPC-N, AAE-CMPC-C, AAE-CMPC-M, 
and AAE-CMPC-CM represent the AAE-CMPC algorithm 
combined with no collaboration and multicast, only collab-
oration, only multicast, and collaboration and multicast re-
spectively. 

After verifying the effect of collaboration and multicast, 
this paper compares AAE-CMPC with TCO [26], LeaD 
[27], and CREAT [28], as follows. 

 
• TCO: An efficient algorithm, called task caching and of-

floading (TCO), based on alternating iterative algorithm. 
• LeaD: Cache deployment strategy, i.e., large-scale WiFi 

edge cache deployment. 
• CREAT: A new algorithm in which blockchain-assisted 

compressed algorithm of federated learning is applied for 
content caching, called CREAT to predict cached files. 

 
Two key metrics are used for evaluation - system latency 

and cache loss rate. Average request latency reflects the av-
erage delay end users face in accessing requested content. 
Meanwhile, the loss rate computes the fraction of content 
requests that cannot get served from edge caches, resulting 
in transmissions from distant cloud servers. 

The simulation results are shown in Fig. 6. Fig. 6 shows 
the simulation comparison between AAE-CMPC and three 
benchmarks under the collaborative multicast strategy. The 
AAE-CMPC scheme employs a holistic approach to joint 
optimization and outperforms other schemes to reduce the 
system's average transmission latency. As the number of it-
erations increases, the average transmission latency of the 
system is reduced, and the average transmission latency is 
also decreasing. This is because, through AAE's prediction 
of content popularity, the macro base station can predict the 
user's request intention and pre-cache the content that may 
be requested. Fig. 6 depicts that the mean transmission la-
tency remains below 3 s, indicating that a significant por-
tion of the requested content has been cached at the small 
base station. Conversely, the average latency of the three 

 
  

Fig. 3. Average latency comparison of different strategies with
RC. 

 
  

Fig. 4. Average latency of different strategies versus the users'
number. 

 
  

Fig. 5. Average latency comparison of different strategies with 
AAE-CMPC. 
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benchmarks exceeds 5.5 s. 
The proposed AAE-CMPC algorithm focuses on a col-

laborative multicast strategy and aims to optimize the over-
all joint performance by reducing the average transmission 
latency of the system. It can enhance higher vocational Eng-
lish teaching by reducing latency and enabling instantane-
ous feedback. The AAE-CMPC algorithm utilizes content 
popularity prediction through an AAE model, enabling the 
macro base station to predict the user's request intention and 
pre-cache the content that may be requested. In higher vo-
cational English teaching, relevant teaching materials, re-
sources, or multimedia content can be pre-cached at small 
base stations closer to the students. Having the content 
readily available at the small base stations can significantly 
reduce the latency for accessing teaching materials. Stu-
dents can quickly access the required materials without 
waiting for data to be fetched from distant servers, and the 
reduced latency ensures students can access the content 
they need promptly, enabling a seamless learning experi-
ence. The reduced latency facilitated by the AAE-CMPC 
algorithm can also enable instantaneous feedback in higher 
vocational English teaching. For example, if the teaching 
materials include interactive quizzes or assessments, stu-
dents can receive immediate feedback on their responses. 
With traditional systems that rely on high latency, students 
may experience delays in receiving feedback, which can 
hinder the learning process, as students may need help cor-
recting their mistakes or promptly reinforcing their under-
standing. However, with lower latency enabled by AAE-
CMPC, students can receive feedback on their performance 
almost instantly, allowing them to promptly address any 
misconceptions or improve their skills. The reduced latency 
provided by the AAE-CMPC algorithm can enhance the in-
teractivity and real-time collaboration aspects of higher vo-
cational English teaching. For instance, if the teaching plat-
form includes features like live video conferencing or col-
laborative document editing, the lower latency ensures 
smoother and more effective communication between in-
structors and students. Moreover, students can actively par- 

ticipate in real-time discussions, ask questions, and receive 
immediate responses from instructors or peers. This inter-
activity promotes engagement and active learning, as stu-
dents can contribute to the learning process without being 
hindered by high latency issues. The AAE-CMPC algo-
rithm can enhance higher vocational English teaching by 
creating a more efficient and interactive learning environ-
ment, reducing transmission latency and enabling instanta-
neous feedback. Students can access teaching materials 
quickly, receive feedback promptly, and actively engage in 
real-time collaboration, leading to improved learning out-
comes. 

Finally, this paper verifies the accuracy of AAE predic-
tion by simulating the loss rate. The simulation involves a 
user group of 500, with the macro base station's capacity 
ranging from 0 to 800 and increasing by 16 at each interval. 
The process involves performing 50 iterations and subse-
quently computing the mean output values, as depicted in 
Fig. 7. Fig. 7 illustrates that an increase in storage capacity 
of the macro base station results in a decrease in loss rate 
for the four algorithms. This is due to the ability of the 
macro base station to cache more content, thereby increas-
ing the hit ratio and reducing the cache loss rate. It can be 
found that the proposed AAE-CMPC scheme has a lower 
loss rate than that of the three benchmarks. 

Numerically, the average latency and loss rate are shown 
in Table 2. 

The proposed edge caching scheme benefits low-latency 
content delivery to enrich teaching. However, translating 
these information-theoretic gains into learning outcomes 

Table 2. Comparison of average latency and loss rate. 
Algorithms Average latency (s) Loss rate 

TCO 5.55 0.50 

LeaD 5.35 0.69 

CREAT 5.27 0.78 

AAE-CMPC 4.17 0.27 

 
  

Fig. 6. Average latency comparison with different algorithms. 

 
  

Fig. 7. Loss rate versus cache capacity of macro base station. 



Journal of Multimedia Information System VOL. 11, NO. 1, March 2024 (pp. 67-82): ISSN 2383-7632 (Online) 
https://doi.org/10.33851/JMIS.2024.11.1.67 

79           

 

involves bridging technological possibilities with practical 
constraints. Modularly integrating the prediction, optimiza-
tion, and personalization components requires overcoming 
enterprise challenges. Inventorying existing IT assets and 
formulating execution roadmaps needs administrator buy-
in. Gradually transitioning current monoliths into micro-
services-based edge-native architectures mandates align-
ment across teams. Moreover, the reliability and security 
implications of distributed caching need evaluations con-
sidering access control policies. Quantifying returns on in-
vestments and navigating budgetary approvals across stake-
holders could pose adoption barriers. Beyond technical in-
tegrations, selling the vision of data-driven, personalized 
learning crucially hinges on addressing teacher concerns re-
garding transparency and agency. Ongoing demos and con-
structive feedback cycles are imperative. In summary, 
alongside algorithmic advancements, holistic frameworks 
factoring procedural, social, and economic realities warrant 
equal attention to fulfill the promise of enhanced pedagog-
ies through edge computing. 

The AAE-CMPC algorithm revolutionizes higher voca-
tional English teaching by effectively reducing latency 
through edge caching optimizations, enabling instantane-
ous learner feedback essential for language acquisition. 
Predicting content popularity and proactively placing mate-
rials on edge nodes nearer to students minimizes transmis-
sion delays to access teaching resources or assessments. 
This allows prompt evaluation of student input, including 
vocabulary usage, pronunciation, grammar accuracy, etc., 
with automated feedback on corrections dispatched in-
stantly over the low-latency edge connections. The real-
time responses keep students iteratively improving lan-
guage construction without falling into the habituation of 
errors that delays would cause. Such tightly coupled review 
cycles catalyzed by sub-second system lag times allow per-
sonalized, adaptive learning. Progress data streams back to 
models, updating student cluster profiles, refining group-
wise content popularity predictions, and caching distribu-
tions for perpetually enhancing teaching quality. The sys-
tem stimulates an interactive paradigm with agile feedback 
tailored to individual needs. While the essence is enabling 
micro-iterative personalized progress tracking and guid-
ance by reducing lag times to nearly imperceptible levels 
using edge-centric optimizations. 

The AAE-CMPC algorithm optimizes content caching 
and storage at the macro base station based on content pop-
ularity prediction. As the storage capacity of the macro base 
station increases, it can cache more content relevant to 
higher vocational English teaching, meaning that a more 
considerable amount of teaching materials, resources, or 
multimedia content can be stored at the edge, closer to the 
students. With increased storage capacity, the macro base 

station can hold diverse teaching materials, including vid-
eos, audio files, e-books, or interactive applications. The 
availability of a wide variety of teaching resources enables 
a richer and more comprehensive learning experience for 
higher vocational English students. The AAE-CMPC algo-
rithm's ability to predict content popularity helps optimize 
the cache hit ratio. When the storage capacity of the macro 
base station increases, more content can be cached, leading 
to a higher probability of content being readily available at 
the edge, reducing the cache loss rate, meaning that students 
are more likely to find the requested teaching materials al-
ready cached at the edge, resulting in faster access times. 
Additionally, the AAE-CMPC algorithm ensures that stu-
dents can access the required teaching materials without ex-
periencing delays due to content retrieval from remote serv-
ers. The efficient retrieval process facilitated by edge com-
puting enhances the learning experience by providing 
seamless and instant access to resources. The AAE-CMPC 
algorithm offers improved reliability and scalability for 
higher vocational English teaching. Since the teaching ma-
terials are stored at the edge, closer to the students, they are 
not solely dependent on a centralized server or data center. 
This decentralized approach reduces the risk of network 
congestion or server failures affecting access to teaching 
materials. Likewise, edge computing facilitates scalability 
in proportion to the growth of the user base. The AAE-
CMPC algorithm can efficiently manage and distribute con-
tent based on predicted popularity, ensuring that teaching 
materials are available even during peak usage. Edge com-
puting, enabled by the AAE-CMPC algorithm, significantly 
reduces latency by bringing the teaching materials closer to 
the students. With edge-based caching, students can access 
teaching materials with minimal delay, enhancing the real-
time nature of interactions, assessments, and feedback. The 
lower latency facilitates real-time collaboration, interactive 
exercises, and instant feedback, as students can seamlessly 
interact with teaching materials and instructors without be-
ing hindered by network latency. Students can participate in 
virtual classrooms, engage in live discussions, or receive 
immediate feedback on their progress, promoting active 
learning and engagement. Using edge computing and the 
AAE-CMPC algorithm, higher vocational English teaching 
can be enhanced through increased storage capacity, re-
duced cache loss rate, improved reliability and scalability, 
lower latency, and enhanced interactivity. These advance-
ments contribute to a more efficient and immersive learning 
experience, empowering students to access teaching re-
sources seamlessly and enabling effective knowledge ac-
quisition. 

While the AAE-CMPC scheme demonstrates promising 
improvements, certain limitations exist. Firstly, the evalua-
tion involved movie rating datasets that have clear contex- 
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tual patterns. However, applicability to multidomain educa-
tional content with greater diversity needs validation. Con-
tent variety could impede prediction accuracy. Next, popu-
lation sizes were limited to the order of thousands. Scaling 
to larger groups requires hierarchical clustering and distrib-
uted model parallelization. 

Furthermore, the algorithms entail several configurable 
parameters like pheromone decay factor and cluster dimen-
sions. Suboptimal tuning could undermine caching gains 
seen in controlled simulations. Additionally, optimized 
edge cache allocation necessitates extensive monitoring of 
node loads. This telemetry gathering could add considera-
ble coordination overhead, eroding networking Fabric effi-
ciencies. Finally, user studies are imperative to assess true 
efficiency gains in learning outcomes versus synthetic re-
quest patterns alone. 

While the evident potential exists, translating these infor-
mation-theoretic improvements to actual student compre-
hension requires further investigation. Testing factors like 
model generalization across topics, robustness to parameter 
tuning, alternative predictive models, hierarchical scaling 
architectures, and evaluation against real-world usage 
would help mature the solutions. 

 

CONCLUSION 

In higher vocational English teaching, the prompt deliv-
ery of teaching materials and the facilitation of instantane-
ous feedback are pivotal for effective language learning. By 
combining the advantages of small base station cooperation, 
multicast, and predictable user behavior, the AAE-CMPC 
algorithm offers an innovative approach. The AAE-CMPC 
algorithm begins by categorizing students into different 
preference groups based on their characteristics. It then uses 
AAE to predict the content each group will likely request. 
To reduce cache redundancy, an ant colony algorithm is em-
ployed to pre-deploy the predicted content across small 
base stations, fostering collaboration between them. During 
content distribution, if a student within a group requests 
popular content, it is actively cached and shared with other 
students in the group who have yet to make the same re-
quest. Otherwise, the content is distributed conventionally. 
The superiority of the AAE-CMPC scheme is demonstrated 
through comparative analysis with three benchmarks. The 
simulation results validate that an increase in the storage 
capacity of the macro base station leads to a reduction in 
the loss rate, which is attributed to the proactive caching 
approach that enhances cache hit ratios. The AAE-CMPC 
algorithm revolutionizes higher vocational English teach-
ing by effectively reducing latency, enabling instantaneous 
feedback, and streamlining the learning process for students. 
It empowers them to access teaching materials promptly, 

receive real-time feedback on their progress, and engage 
seamlessly in collaborative activities. Moreover, the frame-
work leverages edge computing, facilitating increased stor-
age capacity, scalability, and reliability, enhancing the 
learning experience. However, there are certain limitations 
and avenues for future work. First, the AAE-CMPC algo-
rithm assumes predictable user behavior and relies on accu-
rate content popularity predictions. Further research is 
needed to explore more robust and accurate prediction 
models to handle variations in user preferences and dynam-
ically changing content popularity. Then, the algorithm's 
performance should be evaluated under diverse network 
conditions and scaled-up scenarios to ensure its applicabil-
ity in larger educational contexts. Additionally, it would be 
valuable to investigate the potential impact of the AAE-
CMPC scheme on the network infrastructure and resource 
allocation to ascertain its feasibility and practical imple-
mentation. 
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