
Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 221-228): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.221

221

I. INTRODUCTION

 Applied medical research is becoming rapidly

developed and more dependent on imaging for diagnosis

the serious and critical diseases of human body. Thus,

dedicated image analysis software is needed for

quantitative medical imaging [1]. Medical imaging is the

technique used to create images of the human body for

clinical purposes, especially for analyzing some anatomy

related abnormalities.

 Several data visualization and analysis environments

have been developed over the past decades, which claim

to meet the requirements of the users in the field of

computer and computational science [2]. Which

visualization and analysis environments are available for

diagnosis different diseases based on different data types,

such as electromagnetic signals and images;

 MRI is the most common medical imaging technique

used for diagnosing brain-related diseases. The major

advantage of MRI is that it provides more detailed images

than X-ray, ultrasound or CT [3]. MRI can also produce

images in various shades of color, indicating the different

conditions of the tissue under the investigation.

 The most common way to diagnose the disease is to

compare images of suspect organ with images of a healthy

person’s organ [4]. However, sometimes, a simple two-

dimensional comparison is not sufficient to recognize the

disease, so clinicians need to observe the organ in a three

dimensional view [5]. The primary purpose in designing

this software was to 3D render, visualize and segment the

brain MR images to observe and measure volume

shrinkage and deformities of the hippocampus.

 In this work, we develop a new 3D rendering software

for MR images visualization and analysis for hippocampus

segmentation [6]. The main framework is based on

Microsoft .NET and it integrated with C# wrapper of VTK

library (Activiz.NET) as a rendering kernel. Visualization

in C# language using VTK potential can be implemented

using Activiz.NET library, which is an advanced, open-

source software package containing .NET wrapper for all

VTK objects.

 The Visualization Toolkit (VTK), a widely used library

for visualization, is a primary resource for achieving rapid

development of medical imaging tools in cost-effective

way [7]. VTK is an open-source, freely available software

system for 3D computer graphics, modeling, image

3D Rendering of Magnetic Resonance Images using Visualization

Toolkit and Microsoft.NET Framework

Author: Nuwan Madusanka1,Naim Al Zaben2, Alaaddin Al Shidaifat1, Heung-Kook Choi1,*

Abstract
In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization

Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D

rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional

visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume

of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the

diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework

to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary

interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the

graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered

according to user’s preference.

Key Words: Rendering, MR images, C# wrapper, VTK.

Manuscript received June 20, 2015 ; Revised August 1, 2015; Accepted August 10, 2015. (ID No. JMIS-2015-16)

Corresponding Author(*): Heung-Kook Choi, Dept. of Computer Engineering, u-HARC, Inje University, Injero 197,

Gimhae, Gyeongnam, 621-479 Republic of Korea, +82 55 320 3437, cschk@inje.ac.kr
1Dept.of Computer Engineering, Inje University, Gimhae, Korea, nuwanmadusanka@hotmail.com,

alaasoftware@hotmail.com
2Dept. of Health Science and Technology, Inje University, Gimhae, Korea, al-z-aben@hotmail.com

mailto:cschk@inje.ac.kr
mailto:nuwanmadusanka@hotmail.com
mailto:alaasoftware@hotmail.com
mailto:al-z-aben@hotmail.com

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

222

processing, volume rendering, scientific visualization, and

information visualization. VTK also includes ancillary

support for 3D interaction widgets, two- and three-

dimensional annotation, and parallel computing. At its

core, VTK is implemented as a C++ toolkit, requiring

users to build applications by combining various objects

into an application [8]. The system also supports

automated wrapping of the C++ core into Python, Java,

and Tcl, so VTK applications may also be written using

these interpreted programming languages.

II. PROGRAMMING WITH VTK

 The VTK is an object-oriented system; the access of

class and instance data members is carefully controlled in

VTK. In general, all data members are either protected or

private. Access to them is through Set and Get methods,

with special variations for Boolean data, modal data,

strings and vectors. VTK is the most notable algorithm

toolkit that aims to provide an algorithm library for

medical image processing and visualization in this

application development process [9-12]. VTK possesses

the classical object-oriented design for taking full

advantage of the C++ language capabilities.

Fig.1. Visualization toolkit architecture (a) building application

with VTK, (b) VTK Toolkit architecture.

2.1 VTK Interpreted Language Interface

 Computer languages are usually two types: compiled

languages are interpreted languages. Compiled languages

are usually high performing than interpreted languages,

but interpreted languages provide greater flexibility to

rapid application development. Our experience has shown

that interpreted applications can be built significantly

faster than compiled applications, mainly through the

elimination of the compile/link cycle. Also, interpreted

applications are often written in high level languages than

compiled languages. This results in simpler to make the

application with more compact code that is faster to write

and debug [13]. Compiled systems, however, are

absolutely necessary when developing high performance

visualization application such as real time medical image

processing and visualization. Compiled systems also

provide low-level access computer resources.

2.2 VTK Visualization Pipeline Architecture

 Visualization transforms data into images that

efficiently and accurately represent information about the

data. Hence, visualization deals with the issues of

transformation and representation. Transformation is the

process of converting data from its original form into

graphics primitives, and eventually into computer images.

 VTK applications are largely constructed by

connecting vtkAlgorithms together. Each algorithm

inspects the dataset or datasets it is given and produces

some derived data for the algorithms connected to it. The

connected set of filters forms a data-flow network. VTK

uses reference counting heavily to eliminate redundant

memory consumption and timestamps in the demand-

driven network to eliminate redundant computation.

Algorithms are strongly type-checked to enforce

compatible filter connectivity [14]. VTK has hundreds of

algorithms with which to work, from the

vtkAbstractMapper to the vtkXMLWriter. Some

algorithms are extremely focused in what they can do,

while others are completely general such as the

vtkPythonAlgorithm.

 VTK consists of several major subsystems. Probably

the subsystem the most associated with visualization

packages is the data flow/pipeline architecture. In concept,

the pipeline architecture consists of three basic classes of

objects:

1. vtkDataObjects- objects to represent data

2. vtkAlgorithm-objects to process transform, filter

or map data objects from one form into another

3. vtkExecutive- objects to execute a pipeline

which controls a connected graph of interleaved

data and process objects

Fig.2. VTK visualization pipeline

(a) (b)

Compiled

C++ Class
Library

Interpreted Interface

Low Level

Toolkits

Application Level

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 221-228): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.221

223

 The algorithm objects also introduce their own special

complexity. Some algorithms may take multiple inputs

and/or produce multiple outputs of different types. Some

can operate locally on data (e.g., compute the center of a

cell) while others require global information, for example,

to compute a histogram. In all cases, the algorithms treat

their inputs as immutable, algorithms only read their input

in order to produce their output [15-18]. This is because

data may be available as input to multiple algorithms, and

it is not a good idea for one algorithm to trample on the

input of another.

2.3 Volume Rendering with VTK

 Volume rendering is a term used to describe a process

where information exists throughout a 3D space instead of

simply on a 2D surface defined in 3D space. The 3D

sampling points do not have color attributes themselves,

including gray values; however, volume rendering

calculates sampling points contributing to the screen

pixels by an optical model, based on re-sampling. The

algorithm can generate a 3D data field as a whole high-

quality image with easy application of parallel processing

[19-23].

 The vtkImageData object can be used to represent one,

two, and three-dimensional image data. As a subclass of

vtkDataSet, vtkImageData can be represented by a

vtkActor and rendered with a vtkDataSetMapper. In the

3D, data can be considered a volume. Alternatively, it can

be represented by a vtkVolume and rendered with a

subclass of vtkVolumeMapper. Since some subclasses of

vtkVolumeMapper use geometric techniques to render the

volume data, the distinction between volumes and actors

mostly arises from the different terminology and

parameters used in volumetric rendering as it is opposed to

the underlying rendering method.

Fig.3. VTK visualization pipeline for volume rendering

The vtkFixedPointVolumeRayCastMapper uses a ray

casting technique for volume rendering. Algorithmically,

it is quite similar to the vtkRayCastMapper. We chose to

use ray casting due to the flexibility of this technique,

which allows us to support all the features of the software

ray cast mapper but with the acceleration of the GPU.

Fig.4. Code example for read DICOM images from directory and

render the volume using VTK C# wrapper.

Ray casting is inherently an image-order rendering

technique, with one or more rays cast through the volume

per image pixel.

 The image-order rendering process for the vtkVolume is

initiated when the front-facing polygons of the volume’s

bounding box are rendered with a custom fragment

program [24]. This fragment program is used to cast a ray

through the volume at each pixel, with the fragment

location indicating the starting location for that ray.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

224

Fig.5. Reconstructed volume using vtkVolumeRayCastMapper

III. DESIGN AND IMPLIMENTATION

 What follows is an outline of some of the important

details concerning design and implementation of the

software.

3.1 Overview

The software was designed for the development of

interactive volume rendering and segmentation application in

general, having a number of design goals in mind:

 Software should be easy to use on different computers

without any pre configuration.

 Software should be useable for use with different kind of
image formats.

 Software should be able to do arbitrary directional volume

cutting with segmentation capability.

 Logic, model and graphical user interface should be

separated where possible, so that the graphical user

interface and controller is exchangeable, also easy to
extend current application.

Fig.6. Functional representation of software

Besides these general goals, focused the following
major tasks need to be accomplished by the
implementation:

1. Read series of DICOM files into VTK: Read series of
2D medical images using DICOM image reader

2. Volume rendering and visualization: Reconstruct the
3D image by sequentially stacked images

3. Image interpolation: Linear interpolation algorithm
used to generate 3D volume image from existing 2D
series of images

4. Slice manipulation: Segmentation tool needs to have
different directional (orthogonal and arbitrary) sliced
images from 3D volume.

5. Segmentation tool: Tools receive user interaction and
call relevant functions to perform segmentation.

6. Undo and Refresh: All slice segmentation operations
should be undoable step by step or all at once.

3.2 Object Models

 There are two distinct parts in our design. The first is

the graphics model, which is abstract model for 3D

graphics. The second is the visualization model, which is a

data flow model of the visualization process.

3.2.1 The graphic model

 The graphic model captures the important features of a

3D graphics system. Our software has eight basic graphic

objects in the model.

1. Render Window- mange a window on the display

device. One or more renderers draw into a single

render window to generate scenes.

2. Renderer- coordinates the rendering of lights,

camera, and actors.

3. Light- illuminates the actor and background in a

scene.

4. Camera- defines the view position, focal point,

and other camera characteristics.

5. Actor- an object drawn by a renderer in the scene.

Actors are defined in terms of mapper, properties,

and transform objects.

6. Property- represents the rendered attributes of an

actor including object color, lighting, texture map,

shading style.

7. Mapper- represents the geometric definition of an

actor and maps object through a lookuptable.

More than one actor may refer to the same

mapper.

8. Transform-an object that consists of a 4x4

transformation matrix and method to modify

matrix.

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 221-228): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.221

225

3.2.2 The visualization model

 The visualization model based on the data flow

paradigm adopted in many software systems. In this

paradigm, modules are connected together in a pipeline.

The modules perform algorithmic operations n data as it

flows through the pipeline [25]. The execution of this

visualization pipeline is controlled in response to demands

driven or event driven. The appeal of this model is that it

is flexible, and can be quickly adapted to different data

types or algorithms.

 Our visualization model consists of two basic types of

objects: process objects and data objects (see figure 7).

Process objects are the modules of visualization pipeline.

Data objects, also referred to as datasets, represent and

enable operations on the data flow through visualization

pipeline.

Fig.7.Visualization model to process objects A, B, C input and/or

output one or more data objects.

3.3 Memory Management

 A major concern when implementing visualization in

data flow form is the amount of memory consumed. C#

employs automatic memory management, which frees

developers from manually allocating and freeing the

memory occupied by objects. Automatic memory

management policies are implemented by a garbage

collector. The memory management life cycle of an object

is as follows:

1. When the object is created, memory is allocated

for it, the constructor is run, and the object is

considered live.

2. If the object, or any part of it, cannot be accessed

by any possible continuation of execution, other

than the running of destructors, the object is

considered no longer in use and it becomes

eligible for destruction. The C# compiler and the

garbage collector may choose to analyze code to

determine which references to an object may be

used in the future.

3. Once the object is eligible for destruction, at

some unspecified later time the destructor for the

object is run. Unless overridden by explicit calls,

the destructor for the object is run once only.

4. Finally, at some time after the object becomes

eligible for collection, the garbage collector frees

the memory associated with that object.

 The garbage collector maintains information about

object usage, and uses this information to make memory

management decisions, such as where in memory to locate

a newly created object, when to relocate an object, and

when an object is no longer in use or inaccessible.

IV. RESULTS AND EVALUATION

In this section, we demonstrate our medical images 3D

rendering application software. Fig.8 shows the 3D

rendering of series of DICOM images and demonstrate the

3D volume cutting function how to works.

Fig.8. Three axis aligned volume cutting

In order to compare and evaluate, the segmente results of

proposed software with existing medical imaging software.

Here, we compared our software with FreeSurfer and

MRICro software.

 Following as the Fig.9 shows hippocampus

segmentation and 3D rendering results of segmented

hippocampus.

Fig.9. Hippocampus segmentation and visualization.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

226

We used image datasets from six different patients of the

age group (25-40 years) for comparison of segmented

image data using different software. Among them, three

patients are male and three patients are female. Following

table shows segmented hippocampus volumetric data.

Table 1. The segmentation results of hippocampus

Following figures give graphical representation of

segmented hippocampus volumetric measurements of

MRICro, FreeSurfer and Our software.

Fig.10. Left hippocampus volumetric data comparison

Fig.11. Right hippocampus volumetric data comparison

V. CONCLUSION

 Medical image analysis is more than just the algorithms.

Visualization of the original image data and processed

results, interaction with the data, and the data itself are

also important. VTK is a powerful library of medical

imaging algorithms, especially for 3D visualization.

However, medical image segmentation is not well-

supported by VTK. Furthermore, more complex

interaction methods, including undo/redo of interactions

and run-time data management, both of which are required

for convenient-to-use interactive applications, are beyond

the scope of VTK.

 In this research, we have implemented 3D rendering

software for MR images using VTK and Microsoft .NET

framework. Our software provides arbitrary directional

volume cutting and segmentation functions which is not

provided by many existing medical imaging software.

This application software is on-going project and we

expect to improve the functionality, user-friendliness,

flexibility and robustness though the feedback of the

researches. Further work concerns add semi automatic

segmentation algorithm to the application software.

Acknowledgement

This research is supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education,

Science and Technology (2011-0008627).

REFERENCES

[1] E. Heiberg, J. Sjogren, M. Ugander, M. Carlsson, H.

Engblom, and H. Arheden, “Design and validation of

Segment - freely available software for cardiovascular

image analysis,” Journal of BMC Medical Imaging,

vol. 10, no. 1, Jan. 2010.

[2] A. Buja, D. Cook, and D.F. Swayne, “Interactive

high-dimensional data visualization,” Journal of

Computational and Graphic Statistics, vol. 5, no. 1,

pp. 78-99, Mar. 1996.

[3] W. Schroeder, K. Martin, and B. Lorensen, The

Visualization Toolkit, an Object-Oriented Approach to

3D Graphics, 3rd Edition. Kitware, 2002.

[4] L.G. Nyul, A.X. Falcao, and J.K. Udupa, “Fuzzy-

connected 3D image segmentation at interactive

speeds,” Graphical Models, vol. 64, no. 5, pp. 259-

281, Sep. 2002.

[5] D. Maleike, M. Nolden, H.P. Meinzer, and I.Wolf,

“Interactive segmentation framework of the Medical

R² = 0.1356

R² = 0.0378

R² = 0.0963

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

V
o
lu
m
e

Dataset NO

Left Hoppocampus

MRICro

FreeSurfer

Our Software

R² = 0.045

R² = 0.001

R² = 0.008

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

V
o
lu
m
e

Dataset NO

Right Hippocampus

MRICro

FreeSurfer

Our Software

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 221-228): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.221

227

Imaging Interaction Toolkit,” Computer Methods and

Programs in Biomedicine, vol. 96, no. 1, pp. 72-83,

Oct. 2009.

[6] M. Viceconti, C. Zannoni , D. Testi, M. Petrone, S.

Perticoni, P. Quadrani, at. al., “The multimode

application framework: A rapid application

development tool for computer aided medicine,”

Computer methods and Programs in biomedicine, vol.

85, no. 2, pp. 138-151, Oct. 2007.

[7] R.A. Robb, D.P. Hanson, R.A. Karwoski, A.G. Larson,

E.L.Workman, and M.C. Stacy, “Analyze: a

comprehensive operator-interactive software package

for multidimensional medical image display and

analysis,” Computerized Medical Imaging and

Graphics, vol. 13, no. 6, pp. 433–454, Dec. 1989.

[8] K. Cleary, L.Ibanez, S.Ranjan, and B. Blake, “IGSTK:

A Software Toolkit for Image-guided Surgery

Applications,” Computer aided radiology and surgery,

vol. 39, no. 4, pp. 46-53, 2006.

[9] A. Rosset, L. Spadola, and O. Ratib, “OsiriX:An

Open-Source Software for Navigating in

Multidimensional DICOM Images,” Journal of

Digital Imaging, vol. 17, no. 3, pp. 205-216, Sep.

2004.

[10] K. Martin, L. Ibanez, L. Avila, S. Barre, and J.H.

Kaspersen, “Integrating segmentation methods from

the Insight Toolkit into a visualization application”,

Journal of Medical Image Analysis, vol. 9, no. 6 , pp.

579-593, Dec. 2005.

[11] J.J.Caban, A.Joshi, and P. Nagy, “Rapid Development

of Medical Imaging Tools with Open-Source

Libraries,” Journal of Digital Imaging, vol. 20, no. 1,

pp. 83-93, Nov. 2007.

[12] L.S. Avila, U. Ayachit, S. Barre, J. Baumes, and F.

Bertel, The VTK User’s Guide, Install Use and Extend

The Visualization Toolkit,11th Edition. Kitware, 2010.

[13] F. Rousseau, E. Oubel, J. Pontabry, M. Schweitzer,C.

Studholme, M. Koob, et. al., “BTK: An open-source

toolkit for fetal brain MR image processing”,

Computer methods and programs in biomedicine, vol.

109, no. 1 ,pp. 65-73, Jan. 2013.

[14] R. Spence, Information Visualization: Design for

Interaction, 2nd Edition, Pearson, 2006.

[15] A. Kumar, Y.Y. Wang, C.J. Wu, K.C. Liu, and H.S.

Wu, “Stereoscopic visualization of laparoscope image

using depth information from 3D model,” Computer

Methods and Programs in Biomedicine, vol. 113, no.

3, pp. 862-868, Mar. 2014.

[16] J.P. Helferty, and W.E. Higgins, “Combined

endoscopic video tracking and virtual 3D CT

registration for surgical guidance in Image

Processing,” in Proceedings International Conference,

vol. 2, no. 2, pp. 959–961, 2002.

[17] D. Burschka, M. Li, M. Ishii, R.H. Taylor and

G.D. Hager, “Scale-invariant registration of

monocular endoscopic images to CT-scans for sinus

surgery,” Medical Image Analysis, vol. 9, no. 5, pp.

413–426, Oct. 2005.

[18] T. Zinßer, J. Schmidt, and H. Niemann, “Point set

registration with integrated scale estimation,” in

proceeding of 8th International Conference on Pattern

Recognition and Image Processing, pp. 116–119,

2005.

[19] W. Qiu, J.R. Tong, T.Marchant, P.Spencer, C.J. Moore,

and M. Soleimani, “New iterative cone beam CT

reconstruction software: Parameter optimization and

convergence study,” Computer methods and programs

in biomedicine, vol. 100, no. 2 , pp. 166-174, Nov.

2010.

[20] H.M. Ladak, F. Mao, Y. Wang, D.B. Downey, D.A.

Steinman, and A. Fenster, “Prostate boundary

segmentation from 2D ultrasound images,”

International Journal of Medical Physics Research

and Practice, vol. 27, no. 8 , May. 2000.

[21] A.C. Hodge, A. Fenster, D.B. Downey, and H.M.

Ladak, “Prostate boundary segmentation from

ultrasound images using 2D active shape models:

Optimization and extension to 3D,” Computer

Methods and Programs in Biomedicine, vol. 84, no. 2,

pp. 99-113, Dec. 2006.

[22] H.M. Ladak, J.S. Milner, and D.A. Steinman, “Rapid

3D segmentation of the carotid bifurcation from serial

MR images,” Journal of Biomechanical Engineering,

vol. 122, no. 1, pp. 96-99, Aug. 1999.

[23] S. Dammert, T. Krings, W. Moller-Hartmann, E.

Ueffing, F.J. Hans, K. Willmes, et. al., “Detection of

intracranial aneurysms with multi slice

CT:comparison with conventional angiography,”

Journal of Neuroradiology, vol. 46 , no. 6, pp. 427–

434, Apr. 2004.

[24] A. Lauric, E. Miller, S. Frisken, and A.M. Malek,

“Automated detection of intracranial aneurysms

based on parent vessel 3D analysis,” Medical

Image Analalysis, vol. 14, pp. 149–159, Apr. 2010.

[25] Y. Jin, and H.M. Ladak, “Software for interactive

segmentation of the caroid artery from 3D black

boold magnetic resonance images,” Computer

methods and programs in biomedicine, vol. 75, no. 1,

pp. 31-43, Jul. 2004.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

228

AUTHORS

Nuwan Madusanka has received the

BSc degree in Computer Science from

Uva Wellassa University, Sri Lanka, in

2011, and MSc degree in Computer

Engineering from Inje University,

Republic of Korea in 2015. His research

interests are image visualization and

image analysis.

Naim Al Zaben has received the BSc

degree in Software Engineering from Al-

Hussein Bin Talal University, Jordan, in

2011, and MSc degree in Medical

Imaging Science from Inje University,

Republic of Korea in 2015. His research

interests are Image processing, analysis

and visualization.

Alaaddin Al Shidaifat has received the

BSc degree in Software Engineering

from Al-Hussein Bin Talal University,

Jordan, in 2011, and MSc degree in

Computer Engineering from Inje

University, Republic of Korea in 2015.

His research interests are image

enhancement, image segmentation, and

image visualization.

Heung-Kook Choi has gone the

undergraduate studying and graduate

studying in computer science and

engineering at the Department of

Electrical Engineering of Linköping

University, Sweden (1984-1990) and Ph.D.

studying in computerized image analysis

at the Center for Image Analysis of

Uppsala University, Sweden (1990-1996). He was President of

Industry and Academic Cooperation Foundation at Inje

University and President of Korea Multimedia Society. His

interesting research fields are in computer graphics, virtual

reality, and medical image processing and analysis.

