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Abstract: The eigen value problem of a coaxial cavity and a 

modified pill box cavity is investigated using the mode matching 

technique. The coaxial cavity has a cylindrical cavity with beam 

ports and center conductor. The pill box cavity is the same as a 

coaxial cavity without center conductor. The electric field and 

magnetic field are formulated in propagation region and resonance 

region. The boundary and orthogonal conditions are applied to the 

electric and magnetic fields. We derived the eigen value equation 

by the proposed procedure in a coaxial cavity and a modified pill 

box cavity. The electromagnetic field of the real structure is 

disturbed by the coaxial wire. The effect of the coaxial wire in pill 

box cavity with beam ports increase the dominant resonant 

frequency. The coaxial line method of the coupling impedance is 

not adequate for a cylindrical cavity. The results of the mode 

matching technique and simulation agree well. The results 

confirm the proposed formulation is valid. 

Key Words: Coaxial cavity, Mode matching technique, 

Numerical simulation, Pill box cavity.  

I. INTRODUCTION  

 

 Mode matching technique is one of the most frequently 

used methods for formulating boundary values problem. 

The mode matching method has been described in detail by 

Itoh [1]. Mode matching technique has been applied to 

various fields such as the analysis of metal strip loaded 

dielectric antenna [2], a rigorous full wave analysis of 

microstrip via hole grounds [3], the analysis of a coaxial to 

stripline discontinuity [4], the analysis of axially slotted 

coaxial cable [5], and the analysis of metallic plates in 

radial waveguide [6], and the analysis of a cylindrical 

symmetric structure [7-8].  

Electronic beam sees impedance when it transverses 

vacuum components which have different radius.  The 

coupling impedance is often measured by a coaxial line 

method [9-10]. The idea of this method is that the field 

distribution of a relativistic electron beam in the vacuum 

chamber can be simulated by a coaxial TEM transmission 

line with a central wire. However the insertion of a central 

wire could change the field distribution. The motivation of 

this brief is to confirm the effect of the insertion of a central 

wire. In this brief, the effect of coaxial wire in the 

cylindrical cavity is analyzed using mode matching 

technique. The electric and magnetic fields in the coaxial 

cavity are formulated in the propagating resonant regions 

and then boundary conditions are applied to these fields. 

The condition of eigen value problem was derived. 

Numerical results for the eigen value problem agree well 

with MWS commercial software [11]. 

 

II. CYLINDRICAL CAVITY 

 

2.1. Coaxial Cavity  

 
Fig. 1. Coaxial cavity with beam ports. 

 
Fig. 2. Auxiliary structure for the coaxial cavity for mode 

matching. 

The structure under consideration, shown Fig. 1, consists 

of cylindrical beam port pipe with radius b, cylindrical 

cavity with radius c and length d, and cylindrical inner 

conductor with radius a. Due to the symmetry of structure 

about the cavity center plane, perfect electric wall (PEW) 
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or perfect magnetic wall (PMW) can be placed at the plane 

to simplify the problems as Fig. 2.  

The structure is divided in two regions: region (I), the 

propagation region and region (II), resonance region. The 

field in the regions (I) and (II) are represented by 

superposition of the modal functions in coaxial wire. We 

write down the tangential electric fields and magnetic fields 

as follows. 
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where 𝑤1𝑛(ϱ) and 𝑤2𝑛(ϱ) are modal functions in region 

I and region II with propagation constant  𝛽1𝑛(ϱ)  and 

𝛽2𝑛(ϱ) respectively, and 
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𝐽0(𝑘𝑐𝜌) and 𝑁0(𝑘𝑐𝜌) are zero order Bessel function of 

the first and second kind and 𝐽0
′(𝑘𝑐𝜌) and 𝑁0

′(𝑘𝑐𝜌) refer 

to the derivative of 𝐽0(𝑘𝑐𝜌) and  𝑁0(𝑘𝑐𝜌) with respect 

to its argument repectively. It’s considered TEM and axial 

TM mode only, because of axial symmetric structure and 

TEM excitation. The modal functions satisfy the orthogonal 

relations defined by 
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where 𝛿𝑚𝑛 is the Kronecker delta. 

The boundary conditions that must be satisfied are 
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We have a set of equations by using the orthogonality of the 

normal function in (3a) and (3b) 
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where 
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where 

 

b

a
T d


 1

1
, 

c

a
T d


 2

1
, 

b

a

Y
T d


 

0
3 . 

 

It is easier to handle the simultaneous equation in matrix 

and vector form 
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where 𝑀 is a matrix size NN with generic element 

𝑀𝑛𝑚 . The superscript T denotes the transpose operation, 

and 𝐸 , 𝑌2 , 𝑌1 , sin⁡(
𝛽2𝑑

2
) , and cos⁡(

𝛽2𝑑

2
)  are diagonal 

matrix. 

From the equations (5a) – (5d), we have final equation 

 



T
E sin( d / ) SS Y cos( d / )

jMY H Y cos( d / ) c

 



 






 

2 2 2

1 1

1 2 2 2

1
2 2

2 0

,     (6) 

 



Journal of Multimedia Information System VOL. 5, NO. 2, June 2018 (pp. 143-146): ISSN 2383-7632(Online) 

http://dx.doi.org/10.9717/JMIS.2018.5.2.143 

 

145                                                 

 

where 
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and the superscript -1 denotes the inverse operation. 

 The determinant of the coefficient matrix should be 

zero to have solutions. The resonant frequency is the 

frequency that makes the determinant of the coefficient 

equal zero. 
 

2.2. Modified pill box cavity  

The next case to be considered is modified pill box cavity 

with beam port which has no center conductor. Electric and 

magnetic fields equations become simpler forms and have 

no TEM components. 
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In region II 
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The next mathematical handling is the same as that of the 

coaxial cavity. We have the final equation 
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We can find resonant frequency that makes determinant of the 

matrix equal zero. 

 

III. NUMERICAL RESULTS  

 

Resonant frequency of the coaxial cavity was calculated 

numerically by mode matching technique and simulated 

MWS commercial software. The calculated, simulated, and 

measurement results for a coaxial cavity are list in Table 1. 

Figure 3 shows the electric field of the dominant mode in 

the coaxial cavity. 

The calculated and simulated results for a modified pill 

box cavity are list in Table 2. Figure 4 shows the electric 

field of the dominant mode in the modified pill box cavity. 

Table 2 and 3 shows that the insertion of the coaxial wire 

increases the resonant frequency of the fundamental mode. 

This results mean that coaxial line method of the coupling 

impedance is not adequate for a cylindrical cavity. 

 

 
Fig.3 Electric field of dominant mode in a coaxial cavity. 

 

 

Table. 1 The calculated, simulated, and measured 

dominant resonant frequency in a coaxial cavity. 

 
MWS 

Simulation 

Mode 

Matching 

Technique 

Calculation 

Measurement 

results 

Dominant 

Resonant 

Frequency 

2.540 GHz 2.545 GHz 2.543 GHz 

 

 
Table. 2 The calculated and simulated dominant resonant 

frequency in a modified pill box cavity. 

 
MWS 

Simulation 

Mode Matching 

Technique 

Calculation 

Dominant 

Resonant 

Frequency 

2.098 GHz 2.086 GHz 

 

 

 
Fig. 4 Electric field of dominant mode in a modified pill box cavity 

 

IV. CONCLUSION  

 

In this brief, the mode matching technique is applied to 

the coaxial cavity and the modified pill box cavity. The 

results of mode matching technique and the simulation 

agree well. The proposed procedure can be applied to 
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coaxial structure. The results show that the insertion of the 

coaxial wire increase the resonant frequency. The coaxial 

line method of the coupling impedance is not adequate for 

a cylindrical cavity. The proposed formulation can be used 

cylindrical symmetry structures such as a coaxial line filters 

and coaxial transitions by solving transmission 

characteristics. 
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