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I. INTRODUCTION  

As multimedia technology advances, new types of video 

formats such as ultra-high-definition (UHD), virtual reality 

(VR), and 360-degree video has emerged. Accordingly, the 

needs of novel video coding standard that can support 

higher resolution videos and better coding efficiency are 

increasing. Versatile Video Coding (VVC) was developed 

by the Joint Video Exploration Team (JVET), a 

collaboration between VCEG and MPEG [1]. It was 

finalized in July 2020. As the latest video coding standard, 

the VVC adopts several new coding schemes and tools, 

such as coding tree unit (CTU) with a maximum size of 

128×128, quad-tree plus multi-type tree (QT+MTT) 

structure of coding unit (CU) partition and affine motion 

compensation prediction. These new techniques achieve 

about 50% gain over the HEVC standard in terms of bit rate 

reduction. However, the computational complexity of both 

encoding and decoding has also increased sharply. 

n [2], the time complexity of VVC Test Model (VTM) 

was analyzed compared to HEVC Test Model (HM). Figure 

1 compares the normalized total average complexity of the 

HEVC and VVC encoder with all 720p and 1080p test 

sequences [3]. The VVC encoder takes 5, 7, and 31 times 

as much time as the encoding time of the HEVC under Low 

Delay (LD), Random Access (RA), and All Intra (AI) 

configurations, respectively.  

In Figure 2, the complexity breakdown of the VVC 

encoder is presented. The total complexity is broken down 

into six categories of Inter-prediction (Inter), Intra 

prediction (Intra), Transform and Quantization (T/Q), 

Entropy Coding (EC), Loop Filters (LF), and Memory 

(Mem) operations. Out of all the encoding tools, inter-

coding accounts for the highest portion of the total encoding 

time in LD and RA. In addition, the QT+MTT structure 

causes much more recursive calls to coding tool functions 

than that of the quad-tree structure of the HEVC. 

A new approach is needed for the complexity 

optimization for the VVC inter-coding and the QT+MTT 

partitioning. With QT+MTT partitioning structure, a CU 

can be split among quad-tree (QT), binary-tree (BT), 

ternary-tree (TT). Also, horizontal (H) and vertical (V) 

direction split can be applied in BT and TT. Therefore, total 

of 6 split modes (Non-split, QT, BT_H, BT_V, TT_H, 

TT_V) are available for a CU. Figure 3 shows the possible 

split modes, and the Figure 4 represents an example of CTU 

that is partitioned by the QT+MTT structure. To be more 

specific, a CTU is first partitioned by the QT structure. 

Then, the QT leaf nodes that are CUs can be further 

partitioned by the QT or MTT structure. 

For the inter prediction, the VVC encoder takes 

advantage of the redundancy that exists between pictures 
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(inter pictures). After partitioned into blocks, motion 

compensation is applied for each block. Inter prediction 

mode has mainly two coding methods: Advanced motion 

vector prediction (AMVP) mode and Merge mode. In 

AMVP mode, the optimal values of multiple motion vector 

candidates, the motion vector difference value, the 

reference picture number, and the uni-/bi-directional 

prediction mode are encoded. In merge mode, only the 

optimal value of multiple motion vector candidates is 

encoded. The AMVP mode has the advantage of freely 

determining and coding parameters, while the number of 

bits required for coding the parameter is high, and requires 

a complex coding process, motion estimation. For the 

Merge mode, the number of bits required for coding is very 

small, but the prediction value is inaccurate. 

In this study, we define the problem as deciding a split 

mode for a coding tree unit (CTU) by using a convolutional 

neural network (CNN). 

We propose a CNN architecture called multi-level tree 

CNN (MLT-CNN). The MLT-CNN is used during the 

encoding process and is implemented in VVC Test Model 

(VTM) 11.0. In addition, some additional information 

including inter-picture information is used to boost the 

training performance of CNN. 

The remainder of this paper is divided as follows: In 

Section 2, we give a summarization of the related works in 

HEVC and VVC. In Section 3, we first observe which 

information can be useful to train the MLT-CNN model, 

present the MLT-CNN architecture, and then outline the 

overall algorithm. The experimental results are shown in 

Section 4. Lastly, the paper closes with a conclusion and a 

preview of future work in Section 5. 

 
Fig. 1. Normalized average time complexity of the VVC and 

HEVC encoders [2]. 

 
Fig. 2. Complexity analysis for each coding tool in the VVC 

encoder [2]. 

 

 
Fig. 3. Possible split types of a CU in the QT+MTT structure. 

 

 
Fig. 4. Example of partitioning with the QT+MTT in VVC [4]. 

 

II. RELATED WORKS 

 

2.1. Statistical Approach 

Kim et al. proposed an inter mode decision algorithm 

based on temporal correlation in H.264/AVC [5]. In [6], the 

RD cost distribution and spatial correlation were jointly 

adopted for fast CU mode decision in HEVC intra coding. 

Lim et al. utilized the RD cost as the key feature to skip PU 

early and terminate early based on Bayes decision rule [7]. 

In [8], an early skip detection method for HEVC was 

proposed based on the identification of motionless and 

regions with homogeneous texture in a video sequence. A 

fast inter-mode decision algorithm for HEVC was proposed 

by exploiting both the spatio-temporal correlations and the 

inter CU correlation of quad-tree structure among 

neighboring CUs, in which the prediction mode, MV, and 

RD cost were found strongly correlated [9].  

Zhang et al. proposed a scheme based on the relationship 

between impossible modes and distribution of distortion to 

accelerate the inter coding in HEVC [10]. Xiong et al. 

proposed a fast inter CU decision algorithm for HEVC 

based on the latent sum of absolute difference (SAD) 

estimation by defining the concepts of two-layer motion 

estimation and motion compensation RD cost [11]. Lee et 

al. proposed a PU decision algorithm based on correlation 

and block motion complexity (BMC) for HEVC [12]. 

Goswami et al. utilized a Bayesian classifier for skip 

detection and coding unit termination in HEVC [13].  

The advantages of these algorithms are simple, easy to 

implement, and hardware friendly. Also, they are usually 

efficient due to the limited complexity overhead. However, 

these approaches have some limits: Only a small number of 

critical features can be exploited in each algorithm, and the 

thresholds of these algorithms are usually determined based 

on the statistical analyses on a small set. 
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2.2. Deep Learning Based Approach 

For the deep learning-based approach, Jin et al. used a 

convolutional neural network (CNN) to predict the range of 

CU depth in each 32×32 CU, skipping the rate-distortion 

optimization (RDO) search of unused CUs at intra-mode 

[14]. Another CNN-based approach is to predict CU depth 

range at inter-prediction mode, which uses a residual CU as 

the CNN input since the partition relies on the correlation 

between the current frame and the reference frames [15]. 

Considering that various CU partition results may satisfy 

the same depth range, the models in [14], [15] can hardly 

predict the exact CU partition. Thus, they are limited in 

reducing the complexity of the VVC.  

Subsequently, Galpin et al. [16] suggested a scheme 

deciding the CU partition directly by predicting all possible 

CU boundaries between adjacent 4×4 blocks using ResNet 

model [17]. But the bottom-up decision causes unnecessary 

calculation when a CTU is non-split or split into only a few 

large CUs in Kim et al. adopted CNN to predict split or non-

split for CU depth decision both inter and intra-coding in 

the HEVC [18]. Lee et al. have improved visual quality for 

HEVC using CNN [19]. They constructed a little simple 

network model for intra prediction mode. In [20], a CNN 

based fast CU mode decision algorithm is devised for 

HEVC inter-prediction. The CNN takes the features of the 

integer motion estimation (IME) and then determines the 

partition modes in advance. Li et al. proposed a method for 

VVC intra-coding, where multiple CNNs are trained for 

various CU sizes to decide whether the CU should be split 

by which kind of partitioning [21].  

Some studies for VVC intra-coding have been done; 

however, few studies yet consider the characteristics of 

inter-prediction. As some studies show, CNN based 

approach is suitable for dealing with images. The most 

recent work proposed in [15] takes quad-tree plus binary-

tree (QTBT) structure. Also, this method predicts each 

coding unit (CU) depth, therefore it needs more RDO 

process. 

As far as we know, no previous research has studied 

complexity reduction for inter-prediction within QT+MTT 

structure using CNN. Thus, we propose a fast split mode 

decision method that handles with QT+MTT structure by 

utilizing a CNN to decide CU split type efficiently in the 

inter-coding process. In this paper, a new CNN architecture 

that fits QT+MTT structure of the VVC to predict the split 

mode of each square CU is proposed. In addition, we 

present a fast decision algorithm using additional temporal 

information to reduce time complexity for inter-coding in 

the VVC encoder. 

 

III. PROPOSED METHOD 

 

3.1. Observation and Analysis 

In this section, observation and analysis are made on 

block shapes for various conditions to design a CNN 

architecture suited to QT+MTT structure. 

 
 

Fig. 5. Top: one frame encoded with all intra (AI) configuration. 

Bottom: one frame encoded with random access (RA) 

configuration (POC=1, BasketballDrive sequence). 

 

Figure 5 shows an equivalent frame encoded with all 

intra (AI) and random access (RA) configuration (picture 

order count (POC)=1, BasketballDrive from VVC test 

sequences). This represents split tendency difference 

between intra-picture prediction (intra prediction) and 

inter-picture prediction (inter prediction). Each block is 

split finely when encoded with all intra prediction than 

when encoded with inter prediction mode. During the intra 

prediction process, a prediction block is constructed using 

neighboring pixels, and a residual block is obtained by 

subtracting the original block and the prediction block pixel 

by pixel. Meanwhile, the prediction block is found by 

referencing other pictures during the inter-mode prediction 

process. Therefore, it is not enough to characterize a split 

mode of a CU with only original CU image in the inter 

prediction. Furthermore, this leads to why we should make 

use of the residual image as well as the original image of 

CU for CNN based inter mode CU partitioning decision. 

In this work, we target square-shaped CUs as CNN input. 

Specifically, 128×128 blocks are used for training. In 

addition, since square-shaped CU which is split by QT can 

be further split by QT or MTT, it has more cases to be split. 
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This means that QT leaf node, e.g., square-shaped CU, has 

more opportunity to reduce time compared to other shapes 

through early termination. 

 
Fig. 6. CTU partitioning difference by QP. 

 

 
Fig. 7. Picture coding structure of Random Access (RA) 

configuration. 

As shown in Figure 6 and Figure 7, split types are 

different from quantization parameter (QP) value and POC 

value. In Figure 6, there shows CTUs in (0, 0) position in 

BasketballDrive sequence encoded with each of five QPs 

(22, 27, 32, 37, and 42). The QP reflects the compression 

of spatial details. If QP is large, some details are lost and 

the image quality is reduced. Therefore, the larger the QP 

value for the same block is, the shallower the split depth is. 

Additionally, Figure 6 illustrates CTU in (128, 0) position 

in Tango2 sequence with different POC under QP=22 and 

RA configuration. One can notice that the CTU with a 

deeper temporal layer tends to be split further. As shown in 

Figure 7, the first picture in group of pictures (GOP) is 

encoded as intra picture and all the other pictures within the 

GOP are encoded as B or GPB pictures. Encoding order in 

the first GOP is as follows: the picture with POC 8 refers 

POC 0, and then the picture with POC 4 is encoded 

referring POC 0 and 8. As such, the temporal layer gets 

deeper according to the referred pictures. 

Figure 8 shows the encoding time ratio of three inter 

prediction modes (Affine MERGE, MERGE, and Inter ME 

mode) for all CTUs. Encoding time was measured with 

Campfire sequence from CTC sequences with QP={22, 27, 

32, 37, 42}. It shows that two merge modes take much less 

time than that of the Inter ME process. Therefore, it is 

entirely reasonable to predict the split mode of CU using a 

CNN after performing merge modes to decide whether to 

skip Inter ME and split directly. In this stage, the residual 

image is obtained from the current best CU for training 

CNN. 

 

Fig. 8. CTU level encoding time ratio for each inter-prediction 

mode. 

 

3.2. MLT-CNN 

In this study, we propose a multi-level tree CNN (MLT-

CNN) architecture that fits QT+MTT structure of the VVC 

standard. The architecture is modified from Branch-CNN 

(B-CNN) [22]. The B-CNN is suitable for training labels 

with a hierarchical structure because it predicts labels in a 

coarse-to-fine manner. The major difference between 

MLT-CNN and the B-CNN is that the additional feature 

vector is used in each level to improve training performance 

and we use the residual block [23] as a basic block. The 

MLT-CNN network predicts a split mode among four split 

modes for CUs with 128×128, since the ternary-tree split is 

restricted for CTU level. The key feature of the network is 

that it predicts split mode per each level similar to the split 

mode tree structure described in Figure 9. 

   
 

Fig. 9. Split mode tree. 

 

The equation of the cross entropy loss is denoted by:  
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𝐶𝐸 = − ∑ 𝑦𝑖 log(𝑦𝑖̂)
𝐶
𝑖=1 ,             (1) 

 

where 𝑦𝑖 and 𝑦𝑖̂ are the ground-truth and the predicted 

score for each class ｉ, and 𝐶 is the number of classes. 

Also, yî is calculated by: 

 

yî =
esi

∑ esiC
j

                   (2) 

 

The weighted categorical cross-entropy loss is used for 

training the MLT-CNN: 

 

𝑊𝐶𝐸 =  − ∑ 𝑊𝑙𝐶𝐸𝑙
𝐿
𝑙=1 ,        (3) 

 

where 𝐿 denotes the number of levels in CNN. The weight 

𝑊𝑙 changes by iteration so that the loss of each level can 

be reflected effectively. In this experiment, 𝑊𝑙  changes 

every 150k iterations; 𝑊𝑙 =[0.97, 0.02, 0.01] for 0-150k, 

[0.97, 0.02, 0.01] for 150k-300k, [0.1, 0.1, 0.8] for 300k-

450k, and [0, 0, 1] for the last 150k iterations. By setting 

weights different from iteration, CNN can learn the 

characteristics of the hierarchical split mode tree. In the 

early stages of training, the CNN model learns the labels of 

level 1 (split or non-split) by giving more weights on the 

loss of level 1. As learning progresses, more weight is given 

to the lower level. It helps to solve complex problem more 

effectively than learning from scratch. 

Figure 10 shows the architecture of the MLT-CNN. The 

network consists of four ResBlocks with three levels. First, 

the 128×128 original and residual image which can be 

obtained after performing MERGE modes are concatenated 

as a CNN input. Then, 3×3 kernels at the first convolutional 

layer is used to extract the low-level features. Before each 

level prediction, feature maps are further convoluted with 

residual blocks (ResBlocks). 

The detail of ResBlock is depicted in Figure 11. For each 

level, feature maps are flattened and concatenated with 

information vector which includes POC, and the CU-level 

QP. If each of them is not available, it is zeroed. These 

additional data help improve the performance of training. 

Finally, the concatenated tensor goes through one fully 

connected (FC) layer. The effects of using additional 

information will be shown in Section 4. 

 

3.3. Overall Algorithm 

The overall process of the proposed algorithm using the 

MLT-CNN is shown in Figure 12. The VVC test model, 

VTM-11.0, was used as the baseline and additional 

implementation was carried out. After performing MERGE 

mode in the encoding process, the inference is performed 

using original, residual image, and POC, and the CU QP. 

 

 
 

Fig. 10. MLT-CNN architecture for split mode decision. 

 

 
Fig. 11. Residual block [10] used in MLT-CNN architecture. 

  

If the predicted split mode is 0 (Non-split), then it keeps 

performing other modes such as inter motion estimation 

and intra prediction, and then no further split occurs. If the 

predicted split mode is bigger than 0, it means CU needs to 

be directly split and no other split mode for the current 

depth is performed. Split modes 1, 2, 3, 4, and 5 represent 

QT, BT_H, BT_V, TT_H, and TT_V respectively. 
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Fig. 12. Overall structure of the proposed scheme. 

 

𝐈V. EXPERIMENTS AND DISCUSSION 

 

4.1. Dataset Construction 

A training database for deep video compression called 

BVI-DVC [24] is used in this paper. All sequences in the 

BVI-DVC are progressive-scanned at a spatial resolution of 

3840×2160, with frame rates ranging from 24 fps to 120 fps, 

a bit depth of 10 bit, and in YUV420 format. Also, each 

sequence has total of 64 frames. There are 200 kinds of 

video clips and they are augmented with 3 resolutions: 

1920×1080, 960×540, 480×270. Therefore, the resulting 

number of sequences is 800 with four different resolutions. 

We classified all the sequences into three groups 

according to the motion degree of each video. Among the 

whole sequences, 23 kinds of sequences were selected: 9, 7, 

and 7 sequences in the order of high motion degree. 20 

sequences used for training CNN are 

AmericanFootballS3Harmonics, 

BasketballGoalScoredS2Videvo, BricksTiltingBVITexture, 

BuildingRoofS3IRIS, CharactersYonseiUniversity, 

ColourfulRugsMoroccoVidevo, 

FerrisWheelTurningVidevo, FireS18Mitch, 

HamsterBVIHFR, HongKongMarket4S1Videvo, 

LakeYonseiUniversity, 

ManStandinginProduceTruckVidevo, 

MoroccanCeramicsShopVidevo, MuralPaintingVievo, 

PillowsTransBVITexture, RunnersSJTU, SquareS1IRIS, 

StreetDancerS3IRIS, TraditionalIndonesianKecakVidevo, 

and WatPhoTempleVidevo, and 3 sequences for validating 

CNN during training are CostaRicaS3Harmonics, 

FireS21Mitch, and ResidentialBuildingSJTU. Each kind of 

sequence can have four different resolutions, so 92 

sequences were used for building the dataset. 

In VVC Test Model (VTM) 11.0 encoder, the residual 

image is acquired right after Merge mode as the best CU at 

that point under the Random Access (RA) configuration. 

The other information such as picture order count (POC), 

and CU-level QP value are obtained from the decoding 

process. Table 1 shows the number of train and validation 

data of 128×128 size. 

 

Table 1. The number of 128×128 images of each class in training 

dataset. 
128×128 NON QT BT_H BT_V Total 

Train 1,136,495 521,929 115,699 129,277 1,903,400 

Validation 6,702 14,364 1,387 1,847 24,300 

total 1,143,197 536,293 117,086 131,124 1,927,700 

 
4.2. Training Details 

All models were trained using the PyTorch deep learning 

framework [25] with a single GPU for training. Table 2 

shows the specifications of the experimental environment. 

In all experiments, we use Adam optimizer [26] with 𝛽1 =

0.9, 𝛽2 = 0.99 ; initial learning rate 0.0004 that decays 

with the cosine annealing schedule [27]. To assess the 

training performance, the validation accuracy over the 

validation dataset was measured.  

To prove the performance with using additional 

information including temporal features such as residual 

image and POC helps improve training performance, we 

compare the validation accuracy between the ResNet 

trained only with the original CU images (ResNet_O), 

ResNet trained with the original and residual images 

(ResNet_OR), and ResNet trained with the original, 

residual images and the information vector (ResNet_ORI). 

As shown in Figure 13 and Figure 14, the ResNet_ORI 

shows the highest validation accuracy, and the ResNet_OR 

shows higher validation accuracy and lower training loss 

than those of ResNet_O. 

 
Table 2. Simulation Condition for Training CNN models. 

OS Ubuntu 16.04 

CPU Intel Xeon Processor (Skylake, IBRS) (2.6GHz) 

GPU NVIDIA Tesla V100 (32GB) 

Mem 103GB 

 

For training the ResNet, the categorical cross-entropy 

loss was used as the loss function. The weighted categorical 

cross-entropy loss which was mentioned in Section 3.2 was 

used for training the MLT-CNN. Figure 15 shows that the 

proposed MLT-CNN outperforms the ResNet model in 

terms of validation accuracy. As the MLT-CNN can learn 

from multiple levels, it can be trained the complex structure 

of split mode tree. 
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Fig. 13. Train loss of 128×128 ResNet models (ResNet_O, 

ResNet_OR, and ResNet_ORI). 

 

 

Fig. 14. Validation accuracy of 128×128 ResNet models in every 

500 iterations. 

 

Fig. 15. Validation accuracy of 128×128 ResNet_ORI and the 

proposed MLT-CNN model in every 500 iterations. 

 

For training the ResNet, the categorical cross-entropy 

loss was used as the loss function. The weighted categorical 

cross-entropy loss which was mentioned in Section 3.2 was 

used for training the MLT-CNN. 

Figure 15 shows that the proposed MLT-CNN 

outperforms the ResNet model in terms of validation 

accuracy. As the MLT-CNN can learn from multiple levels, 

it can be trained the complex structure of split mode tree. 

 

4.3. Performance Analysis 

In our experiments, all complexity reduction approaches 

were implemented in the VVC reference software VTM 

11.0 [28]. The experiments were conducted on JVET 

common test sequences [29].  The sequences were 

encoded as many frames per second (fps) at the random 

access configuration (using the file 

encoder_randomaccess_vtm.cfg) at five QP values {22, 27, 

32, 37, 42}. After encoding, ∆T, which denotes the time-

saving rate of encoding compared to the original VTM, was 

recorded to measure the complexity reduction. In addition, 

the Bjøntegaard delta bit rate (BDBR) was used to assess 

the RD performance. All experiments were conducted on a 

system with the same condition in Table 2. 

 

        Δ𝑇 =
(𝑇𝑉𝑇𝑀−𝑇𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑇𝑉𝑇𝑀
× 100 %.       (4)  

Table 3 shows the BDBR increment and time reduction 

rate per sequence compared between the proposed method 

and VTM 11.0 anchor under RA test configuration. For all 

the sequences, the proposed method achieves 11.53% 

encoding time saving with 1.01% BDBR increase. The 

results indicate that the time reduction by the proposed 

framework happens usually on the high-resolution 

sequences. This is because there are more CTUs in high 

resolution sequences. In other words, there are more 

opportunities for time reduction.  

By comparing the 3-rd column and the 4-th column in 

Table 3, less time reduction occurs on QP 22. Since CUs 

tend to be split on smaller QPs, it spends more time splitting 

compared to when encoded with higher QPs, meaning non-

split predicted CUs cause more time reduction. 

Figure 16 and Figure 17 represent the RD curves of 
Tango2, BasketballDrive, RaceHorses, and 
BlowingBubbles sequences. It shows VTM-11.0 and the 
proposed method have similar RD curves while the 
proposed method takes less time for encoding. As the MLT-
CNN was trained with 128×128 CUs, the same size CUs 
are aimed in the encoding process. 
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 (a) 

 
(b) 

Fig. 16. RD curves of the test sequences under the RA 

configuration: (a) Tango2, (b) BasketballDrive. 
 

 

(a) 

 
(b) 

Fig. 17. RD curves of the test sequences under the RA 

configuration: (a) RaceHorses[C], (b) BlowingBubbles. 
 

  

  

  

  

  

  

  

                    

 
 
 
 
 
 
 

  
  

              

                

      

  

  

  

  

  

  

  

  

                                          

 
 
 
 
 
 
 

  
  

              

                

               

  

  

  

  

  

  

  

  

  

  

  

  

  

                                        

 
 
 
 
 
 
 

  
  

              

                

                    

  

  

  

  

  

  

  

  

  

  

  

  

  

                                 

 
 
 
 
 
 
 

  
  

              

                

              

Table 3. BD Bit-Rate increase (BDBR: %) and time saving (∆T: %) performance of the Proposed algorithm (128×128) compared to VTM-

11.0 Baseline encoded under the RA for 1 second of each sequence. 

Class Sequence 

QP={22, 27, 32, 37, 42} QP={22, 27, 32, 37} QP={27, 32, 37, 42} 

∆T 
BDBR 

∆T 
BDBR 

∆T 
BDBR 

Y U V Y U V Y U V 

A1 
(4K) 

Tango2 26.14% 3.28% 2.40% 3.42% 25.95% 2.70% 1.72% 1.16% 26.18% 3.32% 0.89% 2.21% 

Campfire 9.81% 0.95% 0.31% 2.05% 7.36% 0.58% 0.00% 1.30% 11.59% 1.20% 0.70% 2.76% 

A2 
(4K) 

CatRobot 25.89% 2.82% 2.41% 2.70% 25.68% 2.58% 1.89% 2.11% 28.66% 2.92% 2.69% 3.00% 

A Avg. 20.61% 2.35% 1.71% 2.72% 19.66% 1.95% 1.20% 1.92% 23.13% 2.55% 2.04% 3.22% 

  B 
  (1080p) 

MarketPlace 24.78% 1.81% 0.98% 0.62% 23.25% 1.33% 0.69% 0.75% 28.26% 2.05% 1.04% 0.62% 
RitualDance 17.62% 1.21% 0.65% 1.18% 16.35% 0.92% 0.21% 0.66% 20.26% 1.49% 0.86% 1.54% 

Cactus 16.23% 0.98% 0.51% 0.30% 13.80% 0.82% 0.47% 0.07% 19.45% 1.06% 0.49% 0.29% 
BasketballDrive 17.50% 1.28% 0.93% 1.18% 15.65% 0.99% 0.86% 0.98% 20.62% 1.43% 1.18% 1.56% 

BQTerrace 14.95% 0.62% -0.08% 0.07% 13.54% 0.67% 0.19% 0.19% 18.38% 0.69% -0.19% 0.01% 

B Avg. 18.22% 1.18% 0.60% 0.67% 16.52% 0.95% 0.48% 0.53% 21.39% 1.34% 0.68% 0.80% 

C 
(WVGA) 

BasketballDrive 9.73% 0.22% 0.43% -0.36% 7.43% 0.19% 0.20% -0.90% 11.45% 0.20% 0.57% -0.13% 
BQMall 4.90% 0.16% -0.42% 0.00% 3.99% 0.12% -0.50% -0.14% 5.71% 0.20% -1.07% -0.08% 

PartyScene 4.59% 0.04% -0.01% -0.36% 2.88% -0.10% -0.09% -0.32% 5.75% 0.13% -0.15% -0.64% 
RaceHorses 5.06% 0.20% -0.35% 0.12% 3.16% 0.15% -0.68% -0.49% 5.66% 0.22% -0.88% 0.11% 

C Avg. 6.07% 0.16% -0.09% -0.15% 4.36% 0.09% -0.27% -0.46% 7.14% 0.19% -0.38% -0.19% 

D 
(WQVGA) 

BasketballPass 4.28% 0.15% -0.16% -0.18% 3.37% 0.06% -0.08% -0.10% 4.05% 0.22% -0.20% -0.18% 
BQSquare 5.42% 0.12% 0.03% -0.03% 3.54% 0.09% 0.06% 0.01% 6.30% 0.14% 0.00% -0.08% 

BlowingBubbles 4.67% 0.09% -0.03% 0.62% 3.59% 0.12% -0.03% 0.94% 5.50% 0.15% -0.47% 0.82% 
RaceHorses 0.25% 0.09% -0.80% -0.39% 0.70% 0.16% -0.95% -0.66% 0.35% 0.13% -1.03% -0.59% 

D Avg. 3.66% 0.11% -0.24% 0.01% 2.80% 0.11% -0.25% 0.05% 4.05% 0.16% -0.42% -0.01% 

F 

BasketballDrillText 8.90% 0.30% -0.08% 0.11% 6.87% 0.32% 0.09% 0.22% 10.21% 0.38% -0.27% 0.51% 

ArenaOfValor 11.81% 0.71% 0.24% 0.50% 10.03% 0.50% 0.19% 0.24% 14.23% 0.87% 0.39% 0.67% 

SlideEditing 9.97% 0.15% 0.20% 0.14% 11.98% -0.01% 0.16% 0.30% 9.09% 0.15% -0.05% 0.40% 

SlideShow 8.03% 4.93% 10.53% 15.18% 10.17% 6.20% 6.07% 6.60% 7.26% 4.88% 10.35% 25.50% 

F Avg. 9.68% 1.52% 2.72% 3.98% 9.76% 1.75% 1.63% 1.84% 10.19% 1.57% 2.60% 6.77% 

Total Avg.  11.53% 1.01% 0.88% 1.34% 10.46% 0.92% 0.52% 0.71% 13.10% 1.10% 0.83% 2.00% 
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V. CONCLUSION 

 

In this paper, we have aimed to reduce the time 

complexity of inter-picture prediction mode as the inter 

prediction accounts for a large portion of the total encoding 

time. The problem was defined as classifying the split mode 

of each CU using the proposed multi-level tree (MLT) CNN. 

The MLT-CNN reflects the tree structure of six split modes: 

non-split, quad-tree split, binary-tree horizontal split, 

binary-tree vertical split, ternary-tree horizontal split, and 

ternary-tree vertical split. By predicting and computing the 

loss at each level as in the split mode tree, the network 

learned complex structure effectively. To improve training 

performance, we observed the split tendency of CU in 

different conditions to figure out which information affects 

split mode. As a result, the original and residual image of a 

CU, the picture order count (POC), and the CU-level 

quantization parameter (QP) value were considered. For 

training MLT-CNN, a dataset that contains the original and 

residual image, POC, CU-level QP, and the ground-truth of 

one CU was constructed. In this study, we have targeted 

128×128 CTUs. 92 video sequences from the BVI-DVC 

database were used to build the training and validation set. 

The overall algorithm including the MLT-CNN inference 

process was implemented on VVC Test Model (VTM) 11.0. 

The sequences were encoded at the random access (RA) 

configuration with five QPs {22, 27, 32, 37, 42}. The time-

saving rate of encoding compared over the original VTM 

was recorded to measure the complexity reduction. Also, 

the Bjøntegaard delta bit rate (BDBR) was measured to 

assess the rate-distortion performance. The experimental 

results showed that the proposed algorithm can reduce the 

computational complexity by 11.53% on average, and 

26.14% for the maximum with an average 1.01% increase 

in BDBR. Especially, the proposed method showed higher 

performance on the sequences of the A and B class, 

reducing 9.81%~26.14% encoding time with 0.95%~3.28% 

BDBR increase. 

The future work is to improve the performance of 

robustness on the sequences with different resolutions. 

MLT-CNN models on 64×64, 32×32, and 16×16 CUs 

should be combined on the proposed algorithm. Also, the 

performance analysis on the low delay (LD) configuration 

is needed to validate the overall performance. 
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