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I. INTRODUCTION  

The rapid development of deep learning has accelerated 
the pace of neural networks in solving various computer-
vision tasks, such as image classification [1] and object de-
tection [2]. To obtain a desirable neural-network model for 
a specific task, the network typically requires a large num-
ber of manually labeled samples to adjust its learnable pa-
rameters to cover the distribution of training samples. How-
ever, it is difficult and expensive to collect sufficient la-
beled samples to train the network. Moreover, deep-learn-
ing methods are prone to classifying classes that have never 
been shown in the training process. It is usually necessary 
to re-train the network on the new classes to achieve desir-
able performance. 

In contrast to deep-learning methods, humans possess 
the ability to learn new concepts from a few samples. To 
imitate human learning processes, many studies have intro-
duced a new learning paradigm, called few-shot learning 
[3]. Few-shot learning aims to develop a learning algorithm 
that correctly matches the labeled and unlabeled samples. 
Among the methods that focus on few-shot learning, met-
ric-based methods [4-6] learn or use a suitable distance met-
ric to classify target samples by measuring the similarities 

between the labeled samples and target samples. As the la-
beled samples are usually limited during training, [6] builds 
a correlation mhiatrix between the labeled and target sam-
ples and uses ts matrix to mutually the informative regions 
between them. However, the correlation matrix is not learn-
able, and thus the network is inefficient in learning new 
classes. 

In terms of pairwise alignment, an attentive pooling 
module [7] has been introduced to match the labeled sample 
to the target one. The attentive pooling module aims to con-
struct a learnable matrix that can mine the latent relation-
ship between the labeled and target sample. By minimizing 
the classification loss on the target sample, the matrix trans-
forms the labeled sample to another feature space that can 
correctly align the features between the labeled and target 
sample. 

In this study, we propose an attentive pooling network 
(APNet) to approach the few-shot learning problem. The 
main building block of APNet is motivated by [7]. First, we 
build an intra-class fusion block to obtain the class proto-
type. Next, APNet computes the soft alignment between the 
prototype and the target sample features by a learnable ma-
trix. This matrix learns to correctly transform the prototype 
features into the feature space that is close to the relevant 
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target sample features. Subsequently, APNet selects the 
maximum similarity score in each row and column of the 
similarity-score map and applies the softmax layer to the 
scores to obtain the attention value for the prototype and 
target sample features, respectively. These attention values 
indicate the mutually important local features of the proto-
type and the target sample; thus, APNet can produce a pro-
totype that is closely related to the relevant target samples. 
In terms of contribution, since [7] is originally proposed to 
solve the question-answering problem, we additionally 
build an intra-class fusion block to aggregate the labeled 
sample features for the image classification task under the 
few-shot settings. Further, different from the original paper, 
we change the max-pooling direction to correctly augment 
the informative regions of support and query samples. To 
verify the effectiveness of APNet, we conducted experi-
ments on two popular few-shot learning datasets, and the 
experimental results show the proposed method gains con-
siderable improvement compared to the existing methods. 

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work of few-shot learning. 
Section III gives the problem definition and the details of 
the proposed method. Section Ⅳ presents the experimental 
results, and Section Ⅴ concludes the paper. 
  

II. RELATED WORK 

2.1. Metric-Based Few-Shot Learning 
The metric-based methods advocate learning a suitable 

distance-metric function for the network, such that intra-
class samples are close to each other. RelationNet [4] pa-
rameterizes the distance metric through a convolutional 
neural network (CNN). MatchingNet [3] adopts a bidirec-
tional LSTM on the labeled sample features to extract the 
important features. ProtoNet [8] hypotheses that intra-class 
features are clustered around a prototype feature and calcu-
late the mean vectors for classification. FEAT [5] generates 
prototypes that contain task-specific features by self-atten-
tion. DCAP [9] concatenates the intra-class feature vectors 
with the mean prototype and applies an attention regressor 
on the vectors to calculate attention for local features. CAN 
[6] proposes a cross-attention block to explore the correla-
tions between the labeled and unlabeled sample features. 
However, the cross-attention block leads to different out-
comes for each unlabeled sample according to the labeled 
sample, which consequently confuses the classifier when 
input classes are similar.  

   
2.2. Attentive Pooling Module 

The attentive pooling module [7,10] focuses on using a 
learnable matrix to match the informative regions between  
the labeled and target sample. [7] firstly proposed the atten- 

tive pooling module to solve the question-answering tasks. 
The module is simple but effective owing to the learnable 
matrix that correctly transforms the question embedding 
into a proper embedding space where the answer embed-
ding lies. In the complicated person-re-identification task, 
[10] adopted the attentive pooling module to remove the re-
dundant background information by calculating the pair-
wise alignment scores. Despite the attentive pooling mod-
ule having achieved promising performance on the above 
tasks, it has not been applied in the few-shot learning. 
Therefore, we modify the module to approach the few-shot 
learning problem.  

  

III. METHODOLOGY 

3.1. Problem Definition 
In this study, we consider the standard N-way K-shot 

classification problem. In few-shot learning, a dataset is 
split into three meta-datasets: meta-training Dtrain, meta-
validation Dval, and meta-testing Dtest. Each meta dataset has 
a disjointed labeled space to the others, e.g., Dtrain∩Dtest=Ø. 
To simulate data scarcity, few-shot learning uses an epi-
sodic learning mechanism to construct training tasks in 
each iteration. Specifically, each task consists of a support 
set S={(x1,1, y1,1). … ,(xN,K, yN,K)} and a query set 𝑸 =(𝒙𝟏, 𝒚𝟏), … , (𝒙𝒋, 𝒚𝒋) , where 𝒙𝒏,𝒊 is the 𝒊𝒕𝒉 labeled sam-
ple of the 𝒏𝒕𝒉 class, yn,i∈{1, ..., N} is the corresponding 
label, and 𝒙𝒋 is the 𝒋𝒕𝒉 unlabeled sample. In each task, 
the setting of the support set is usually referred to as the N-
way K-way classification problem. The primary goal of 
few-shot learning is to efficiently utilize limited support 
samples to generate a representative class prototype, which 
is used to accurately predict the labels of the query samples. 

  
3.2. Model Architecture 

One feasible solution to solve the few-shot learning prob-
lem is to build the soft alignments between the prototype 
and the query samples, so that the features of the prototype 
can be aligned to those in the query samples. To this end, 
we adopt the core block from [7], which allows the network 
to mine latent features that closely match the query features. 
This enables the network to generate a more characteristic 
prototype for efficient classification. 

The overall structure of APNet is shown in Fig.1. Intui-
tively, APNet takes support and query samples as inputs 
and generates the corresponding feature maps by a CNN 
backbone 𝒇𝜽 with learnable parameters 𝜽. Subsequently, 
APNet averages the intra-class feature maps to obtain the 
prototype 𝑷𝒏 for the 𝒏𝒕𝒉 class by 

  𝑷𝒏 = 𝟏𝑲 𝒇𝜽(𝒙𝒏,𝒊)𝑲𝒊 𝟏 . (1)



Journal of Multimedia Information System VOL. 9, NO. 4, December 2022 (pp. 269-274): ISSN 2383-7632 (Online) 
https://doi.org/10.33851/JMIS.2022.9.4.269 

271 

 

We reshape the prototype 𝑷 ∈ 𝑹𝑪×𝑯×𝑾 and the query 
feature as 𝒒 ∈ 𝑹𝑪×𝑯𝑾, where 𝑪, 𝑯, and 𝑾 represent the 
values of the channel, height, and width of the feature maps. 
Next, we add a learnable matrix 𝑼 ∈ 𝑹𝑪×𝑪 to transform 
the prototype. The learnable matrix U is expected to trans-
form the prototype to the proper feature space, such that the 
prototype can correctly match the local features of the query 
sample feature. We apply the tanh activation function to the 
matrix multiplication to obtain a soft alignment score ma-
trix 𝑮 ∈ 𝑹𝑯𝑾×𝑯𝑾. The whole procedure can be formulated 
as: 
  𝑮 = 𝐭𝐚𝐧 𝐡(𝑃 𝑈𝑞). (2)
 

Each row of the matrix G represents the soft alignment 
scores between one local feature of the transformed P and 
all the local features of the query feature map. On the other 
hand, each column indicates the scores between one local 
feature of the query feature map and all the features of the 
transformed P. 

In the next step, APNet performs row-wise and column-
wise max-pooling over matrix G to obtain the vectors 𝒈𝑷 ∈ 𝑹𝑯𝑾 , and 𝒈𝒒 ∈ 𝑹𝑯𝑾 , respectively. Thus, the 𝒊𝒕𝒉  ele-
ment of the vectors 𝒈𝑷 and 𝒈𝒒 can be formulated as fol-
lows: 

  𝒈𝑷 𝒊 = 𝐦𝐚𝐱𝟏 𝒓 𝑯𝑾 𝑮𝒊,𝒓 , (3)
  𝒈𝒒 𝒊 = 𝐦𝐚𝐱𝟏 𝒄 𝑯𝑾 𝑮𝒊,𝒄 . (4)

Each element of the vector 𝒈𝑷 is the maximum align-
ment score obtained by searching for the most similar local 
feature on the query-feature map for each local feature in 
the prototype. Similarly, each element of the vector 𝒈𝒒 
represents the importance score of the local feature of the 
prototype that is most similar to each local feature on the 
query-feature map. Subsequently, we apply softmax to the 
vectors 𝒈𝑷 and 𝒈𝒒 to normalize the alignment score 
 𝝈𝑷 = 𝐞𝐱𝐩( 𝒈𝑷 𝒊)∑ 𝐞𝐱𝐩( 𝒈𝑷 𝒋)𝑯𝑾𝒋 𝟏 , (5)

 𝝈𝒒 = 𝐞𝐱𝐩( 𝒈𝒒 𝒊)∑ 𝐞𝐱𝐩( 𝒈𝒒 𝒋)𝑯𝑾𝒋 𝟏 . (6)

 
After obtaining the attention vectors 𝝈𝑷  and 𝝈𝒒 , we 

compute the dot product between the prototype P and the 
attention vector 𝝈𝑷. The same operation is also conducted 
between the query feature map q and the attention vector 𝝈𝒒: 
 𝒓𝑷 = 𝑷𝝈𝑷, (7)
 𝒓𝒒 = 𝒒𝝈𝒒. (8)
 

To perform classification, APNet uses the cosine dis-
tance function on the refined prototype 𝒓𝑷 and query fea-
ture 𝒓𝒒. The softmax function is applied to the distances, 
and the class index with the maximum probability is se-
lected as the predicted label for the query sample. 
 

Ⅳ. EXPERIMENTS 

4.1. Few-Shot Learning Datasets 
Herein, we introduce the details of the two few-shot 

learning datasets that were used to evaluate APNet in this 
study. One, the miniImageNet dataset, was presented by [3]. 
It includes 100 classes and is split into 64, 16, and 20 clas-
ses, as 𝐷  , 𝐷  , and 𝐷  . Each class contains 600 
images of pixel size 84×84. The other is the CUB-200-2011 
dataset [11]. This dataset contains 11,788 images of 200 
bird species. We split the dataset into 100, 50, and 50 clas-
ses for training, validation, and testing, respectively, in ac-
cordance with previous studies [5,9]. All the images were 
resized to 84×84 to fit the input of the backbone network. 
  
4.2. Implementation Details 

In this study, we adopted a 4-layer convolutional network 
(Conv4) [5] as the backbone network. We trained APNet for 
100 epochs, with each epoch featuring 600 tasks. The num-
ber of query samples for each class was set to 15. In the 

Fig. 1. Detailed structure of APNet. The intra-class feature fu-
sion block aggregate the intra-class information and G is a learn-
able matrix to build soft alignment between support and query
samples. 
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testing stage, we conducted 5-way 1-shot (5W1S) and 5-
way 5-shot (5W5S) classification tasks for each dataset. 
The final classification accuracy was evaluated over 10,000 
episodes and reported with a 95% confidence interval. 
 
4.3. Image-classification results 

Table 1 displays the classification results on the 
miniImageNet dataset. Compared to the related methods, 
the accuracies of APNet were 5% and 2% higher than those 
of CAN under the 1-shot and 5-shot settings. APNet also 
outperformed the current method, DCAP, by a considerable 
margin in the 5-shot task. 

Table 2 presents the classification results on the CUB-
200-2011 dataset. It can be observed that APNet consist-
ently performed better than the other methods. This indi-
cates that APNet can efficiently augment the important lo-
cal features of each class in the presence of similar classes. 
  

Ⅴ. CONCLUSION 

In this study, we proposed an attentive pooling network 
(APNet) to maximize information utilization. To aggregate 
the intra-class features, we first used a fusion block to  

obtain the class prototype. Then, we extracted latent rela-
tionships between the prototypes and target features via a 
learnable matrix, which was used as the criterion to selec-
tively assign higher attention values to important regions. 
By conducting experiments on two few-shot learning da-
tasets, APNet achieved 53.68% and 71.12%, 59.93% and 
77.58% classification accuracy on the 1-shot and 5-shot set-
tings on the miniImageNet and CUB datasets, respectively. 
The experimental results demonstrated a higher classifica-
tion performance than the other methods, which validated 
the effectiveness of APNet under the few-shot settings. 
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