Table 1. Finite step method

Definitions
xk : estimate of true image
Ik : index set at xk
C : given positive definite symmetric matrix
d : given vector
Ω : constraint set
PrΩ (·) : projection function defined by Equation (III.5)
α : step size
γ,m : parameters used to update α
Set initial conditions:
Initialize xk ∈ Ω, k: = 0
Set m=1, γ ∈ (0,1)
At iteration k:k=0,1,2,…
Construct the index set Ik at xk.
Ik=I(xk) = {i| x i k = 0,1 ≤ in}.
Let x̅k be a solution of the problem
minf(x),x ∈ Ωk
Ωk = {x ∈ ℝn|xi = 0,iIk}
that is solved by conjugate gradient method.
If x̅k ∈ Ω, then go to step 5.
Otherwise, construct point xk+1
xk+1 = xk + λk (x̅kxk),
where
λ k = min j I 1 k x j k x j k x ¯ k ,
I 1 k = { i | x i k x ¯ i k 0 , i I ( x k ) , 1 i n } ,
and go to step 1 for k: = k+1.
Check optimality condition at point x̅k
{ ( x ¯ k ) T C x ¯ k d T x ¯ k = 0 C x ¯ k d 0.
If this condition holds, then x̅k is the solution of the problem.
Otherwise, find the projection of v for α = γm on Ω :
v=PrΩ (x̅kαf′(x̅k)).
If f(v) < f(x̅k), then go to step 1 for x̅k: = v.
Otherwise, go to step 6 for m:=m+1.