Table 1. Experimental results of synthetic distortion dataset.

Datasets LIVE [25] CSIQ [26] TID2013 [27] Weight average
Methods SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
PSNR 0.876 0.872 0.806 0.800 0.636 0.706 0.773 0.793
SSIM [19] 0.913 0.945 0.834 0.861 0.775 0.691 0.841 0.833
FSIMc [23] 0.963 0.960 0.913 0.919 0.802 0.877 0.893 0.919
BRISQUE [30] 0.939 0.942 0.775 0.817 0.572 0.651 0.762 0.803
CORNIA [31] 0.942 0.943 0.714 0.781 0.549 0.613 0.735 0.779
IL-NIQE [32] 0.902 0.908 0.821 0.865 0.521 0.648 0.748 0.807
CNN [33] 0.956 0.954 0.683 0.754 0.558 0.653 0.732 0.787
HOSA [33] 0.948 0.949 0.781 0.841 0.688 0.764 0.806 0.851
FRIQUEE [35] 0.940 0.944 0.835 0.874 0.680 0.753 0.818 0.857
RANK [14] 0.981 0.982 0.861 0.893 0.780 0.793 0.874 0.889
DMIR-IQA [36] 0.967 0.971 0.823 0.881 0.796 0.821 0.862 0.912
MMMNet [37] 0.970 0.970 0.924 0.937 0.832 0.853 0.908 0.920
AIGQA [38] 0.960 0.957 0.927 0.952 0.871 0.893 0.919 0.934
DB-CNN [15] 0.968 0.971 0.946 0.959 0.816 0.865 0.910 0.931
Deep-FL [39] 0.972 0.978 0.930 0.946 0.858 0.876 0.891 0.907
CaHDC [40] 0.965 0.964 0.903 0.914 0.816 0.865 0.895 0.914
NSSADNN [41] 0.986 0.984 0.893 0.927 0.844 0.910 0.907 0.940
BaseLine 0.950 0.954 0.876 0.905 0.712 0.756 0.846 0.872
Ours 0.976 0.980 0.942 0.954 0.895 0.903 0.940 0.945