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I. INTRODUCTION  

Recent advance in deep learning technologies has led to 
an explosion of several intelligent vision applications such 
as autonomous vehicles [1], computer-aided diagnosis [2] 
and video surveillance [3]. 

In particular for video surveillance, visual intelligence 
has been applied for helping and optimizing the manual de-
cision making process by human vision as form of auto-
matic scene understanding such as object detection with 
tracking, face recognition and abnormal behavior. 

The visual intelligence is generally embedded in a ma-
chine learning (ML) model after training process with 
abundant data samples. Many researchers have validated 
their own ML models with a remarkable performance gain 
in their lab tests under a finite test sample set. But practi-
cally, after the model has been deployed in a video surveil-
lance system, it would be quite frequent that unexpected 
data is fed into the system during 24/7 operations. The 
model performance normally tends to get worse or to con-
verge at a low accuracy since the model would be naturally 
insufficient to understand all scene dynamics in real world. 

The unseen data problem usually gets more severe for 
large-scale video surveillance such as video surveillance as 
a service, where the ML models are equipped on directly 

front-end edge devices and/or on back-end inference ser-
vices over cloud. Under normal circumstances in practical 
applications, single ML model designed for a certain func-
tionality such as intrusion detection is universally applied 
over all cameras and any form of customization in the ML 
model is unlikely to occur in real systems except for some 
limited parameters such as confidence threshold. 

Many studies have attempted to elucidate how it may be 
resolved with data repurposing [4], domain adaptation [5] 
and novel training methods [6]. A transfer learning frame-
work was proposed to convert a general pedestrian detector 
to a particular domain with a minimal annotation need [7]. 
In order to decrease the false negatives and false positives, 
authors in [8] suggested an unsupervised domain adaptation 
technique for a single-stage object detector employing 
weak self-training and adversarial regularization. Moreover, 
authors in [9] studied a theoretical framework and architec-
ture for designing lifelong learning. 

Proper training sources from false alarms and/or missed 
cases can overcome this limitation. However, they are in-
frequently accessible because of privacy legal problems for 
personal individual information, and unpredictability of 
new incoming data, as depicted in Fig. 1. Moreover, trying 
to update new data to the existing model requires modifica-
tion of its weights, so that it contradicts the prior under- 

 
Lifelong Learning Architecture of Video Surveillance System 

 
Taewan Kim1 

 
Abstract 

The learning capacity of general deep learning models for object detection would not be large enough to represent real-world scene dy-
namics, and thus such models would be weak to `unseen' data due to environmental changes. To address this issue, online or active learning 
methods use data samples obtained in new environments, where the new samples collected from false and/or miss detection cases are used to 
re-train the original model to enhance detection precision. However, it is inevitably degraded over time due to the catastrophic forgetting 
problem, that is a well-known intrinsic problem of current deep learning technologies. In this study, we propose a cutting-edge end-to-end 
system architecture to continuously improve the accuracy of the video analytic algorithms such as object detection with less accuracy degra-
dation, by utilizing a hybrid combination of intelligence both the front-end and back-end systems. We use an iterative process where the 
current model is self-evolving using new incoming data as part of an ongoing adaptation process. We carried out several experiments of 
person detection in surveillance videos with various challenging environmental changes and showed the high precision and adaptability of 
our new architecture while it can be practically implemented at a low cost. 

Key Words: Intelligent Video Analytics, Video Surveillance, Self-Adaptation, Person Detection. 

Manuscript received February 27, 2023; Revised March 10, 2023; Accepted March 14, 2023 (ID No. JMI-23M-02-005) 
Corresponding Author (*): Taewan Kim, +82-2-940-4751, kimtwan21@dongduk.ac.kr. 
1Division of Future Convergence (Data Science Major), Dongduk Women's University, Seoul, Korea, kimtwan21@dongduk.ac.kr 



Lifelong Learning Architecture of Video Surveillance System 

54 

 

standing significantly, yielding the issue know as cata-
strophic forgetting. 

In this work, we have developed a novel end-to-end 
video surveillance architecture to adapt the ML model to 
the individual camera environment. detector in video sur-
veillance using Multi-Scale ResBlock (MSRB). Then, a 
novel domain adaptation technique is employed in an intel-
ligent back-end system to switch from a generic model to 
an individual-specific model by accurately understanding 
the space and context information. 

To the best of our knowledge, the paper is the first re-
search into a lifelong video surveillance system with a real-
world commercial platform, driven mainly by the near 
flawless accuracy and scalability of the Intelligent Video 
Analysis (IVA) system. We carried out comprehensive ex-
periments to show the proposed method on two public and 
one private data sets and demonstrate that the suggest ap-
proach beats various widely used baselines by a significant 
margin. This superiority enables to deploy this architecture 
in real-world commercial platform that proof-of-concept 
(POC) experiments were carried on Microsoft Azure cloud 
to identify its significance. 

The main contributions of the proposed approach are 
summarized as follows. 
• For detecting a person in a video surveillance system, an 

end-to-end hybrid architecture between an intelligent 
camera and a cloud server was proposed. It is a frame-
work that is iterative which captures useful data for on-
going comprehension and learning. 

• For the intelligent front-end, we suggest a Multi-Scale 
ResBlock (MSRB)-PeleeNet for our object detection 
model in the intelligent front-end camera motivated and 
use the ResBlock of the residual structure at each feature 
map. 

• We are creating a novel domain adaption strategy in the 
inference phase, resulting in a unique personal model, to 
accurately comprehend each space and contextual data in 

intelligent back-end system. 
• We conducted POC testing in real-world settings and lab 

studies on the set of test data to evaluate and verify the 
suggested technique in a more usable manner. 

  

Ⅱ. ARCHITECTURE DESIGN OVERVIEW 

We propose a novel architecture for video surveillance 
which combines two different intelligence systems as de-
picted in Fig. 2. Unlike traditional server-based video sur-
veillance structure, we deploy a detection model on the 
camera as an intelligent front-end architecture to permit the 
scalability, adaptability, and expansion of the system. 

To create a reliable initial generic object detection model 
on the edge camera, we train the CNN model with training 
set from several sources of video surveillance. A thorough 
evaluation of the data set having been completed, initial 
model is deployed on cameras for detecting an important 
object, as shown in Fig. 2. Subsequently, learning the pre-
cise spatial and context information, the original model is 
replaced to an individual-specific model. If an image’s con-
fidence score is high according to the present model, we use 
it as a verification data set when developing another IVA 
functions by defining dissimilarity metric (DSM), as illus-
trated in Fig. 2. On the contrary, when it shows a small con-
fidence value below than pre-defined threshold, it is utilized 
as a potential option for a new training data set to get around 
the uncertainness (i.e., to update the model). 

It is crucial that the present model utilize new data as part 
of an ongoing adaption process via model version manager, 
as shown in Fig. 2. Additionally, our architecture iteratively 
carries out the model assessment method to solve the cata-
strophic forgetting issue and enable ongoing learning in 
real-time. It strengthens the adaptability of our system to 
new, specific target data. 

  

Ⅲ. NOVEL FRONT- AND BACK-END IN-
TELLIGENCE FOR LIFELONG LEARNING 

3.1. Intelligent Front-End Architecture 
It is crucial to develop a model not largely dependent on 

a particular layer to deploy a CNN model to a camera (e.g., 

Fig. 1. Several challenges and characteristics of video surveil-
lance. 

  

Fig. 2. Proposed architecture for intelligent video surveillance. 
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depthwise separable convolution layer). The ResBlock used 
in the original model of PeleeNet applied only one (3×3) 
size kernel, so that it is difficult to robustly detect various 
sizes of people especially in occluded and blurred areas 
shown in Fig. 3. It is important to consider both the sur-
rounding information and the object itself when determin-
ing whether objects are obscured by other objects or the im-
age borders. The inability to extract and examine the pixel 
data surrounding the objects while employing a common 
kernel on the feature map. This problem is more severe 
when the resolution of image is lower, which is usually the 
case in cloud-based video surveillance services. 

In general, some object detectors like Yolo v5 [10] and 
ssFPN [11] were proposed to detect objects more accurately. 
However, a novel object detection model which efficiently 
captures important objects in real-time has not yet been sys-
tematically developed especially for video surveillance 
camera. Thus, we suggest a Multi-Scale ResBlock (MSRB)- 
PeleeNet for our object detection model in the intelligent 
front-end camera motivated and use the ResBlock of the re-
sidual structure at each feature map, as shown in Fig. 4. The 
MSRB proposed is made up of different sized kernels (3×3, 
5×5, and 7×7) to handle the surrounding context infor-
mation more concretely. Multi-scale kernels can be used to 
evaluate each of the layer characteristics, yielding statisti-
cally better performance at various scenes. It is also notice-

able that the performance is maintained by using the re-
trieved context information even in severe blurring cases. 

Fig. 3 shows the qualitative results on two video surveil-
lance scenes, where the proposed object detector detects a 
person more accurately even in the occluded or blurred 
cases compared to the original PeleeNet. Furthermore, we 
disregard the last three feature maps (5×5, 3×3, and 1×1) in 
the original design to lower the expensive computational 
expenditures in PeleeNet. Finally, we can identify that 
MSRB-PeleeNet is appropriate to detect objects for front-
end surveillance camera due of its high accuracy and 
simplicity of computation. 

  
3.2. Intelligent Back-End System 

For intelligent back-end architecture, new domain adap-
tion scheme is what we suggest on MSRB-PeleeNet at each 
camera to become familiar with the appropriate personal 
surroundings. Denote data of the target during the adapta-
tion in frame duration 𝑁 as 𝑥஺௧ =  {𝑥଴௧, 𝑥ଵ௧, . . . , 𝑥ே௧ }, where 𝑛 is the frame number within 0 ൑ 𝑛 ൑ 𝑁. Even if there is-
n't any labeled data that corresponds to the bounding box 
coordinates for training, we may use it as a negative set 
when there is no one present on the image.  

Here, we provide a novel technique for sampling the 
negative background images automatically during the ad-
aptation period. First, we choose the first frame 𝑥଴௧ as an 
element of the final selected set 𝑥ௌ௧ (𝑥ௌ௧ ⊂ 𝑥஺௧). In this step, 
even there are some foreground objects in the scene, even 
after many rounds, we can still provide effective outcomes 
for domain adaptation. The following step is to acquire the 
gray-scale frame difference image, 𝑥ො஽೙௧ = 𝑥ො௡௧ − 𝑥ො௡ିଵ௧ , 
where 𝑥ො௡௧  is the gray-scale image in the 𝑛௧௛ frame. Hence, 
if the average of difference across the most recent few 
frames (5 frames in this paper) is more than a specific 
threshold 𝜀, it means moving objects appear on the 𝑛௧௛ 
frame. Avoiding the repetition problem is what we choose 
a (𝑛 − 1)௧௛ frame, 𝑥௡ିଵ௧  as an alternative for the consec- 

 
Fig. 3. The results of PeleeNet and our CNN model (MSRB) in the difficult cases of (left) the occluded person and (right) the blurred 
person. 

  

Fig. 4. Network architecture of object detection model. 
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utive step. It is preferable to choose only one frame as a 
representative image instead of choosing from all the can-
didates in a surveillance video since the next frames are 
nearly similar. 

The third phase is where we define a new metric (M) of 𝑥௡ିଵ௧  through all frames in 𝑥ௌ௧  to avoid the repetition in 
this set by considering the luminance, contrast, structure, 
and texture dissimilarity: 

 𝑴(𝒙𝒏ି𝟏𝒕 ) = 𝒔𝒔𝒊𝒎(𝒙𝒏ି𝟏𝒕 ) × 𝟏𝟏ା𝐞𝐱𝐩 (ିℸ(𝒙𝒏ష𝟏𝒕 )), (1)

 
where 𝑠𝑠𝑖𝑚(∙)  is the structural similarity index metric 
(SSIM) [12], which is a remarkable human visual system-
aware objective image quality assessment method that it is 
calculated with all images in 𝑥ௌ௧, and ℸ(𝑥ො௡ିଵ௧ ) is the abso-
lute difference of texture entropy on (𝑛 − 1)௧௛ frame, 𝐸(௫ො೙షభ೟ ), which means the dissimilarity of visual entropy of 
texture information based on the information theory [13]. 

We only use the negative set 𝑥ௌ௧ when refining the first 
object detector for training without any positive samples for 
detection. As a result, if the initial detector discovers 
bounding boxes that are considered as false positives, since 
this area is devoid of any thing in the frame, according to 
the confidence score of, loss value is penalized on the pre-
dicted bounding box as follows. 

 𝐿(𝑐, 𝑙) =  ଵே೛ {𝐿௖௢௡௙(𝑐) + 𝐿௟௢௖(𝑐)}, (2)
 𝐿௖௢௡௙(𝑐) = − ∑ log(𝑐௜)ே೛௜ , (3)
 𝐿௟௢௖(𝑐) =  ∑ 𝑠𝑚𝑜𝑜𝑡ℎ௅ଵ(𝑙௜)ே೛௜ , (4)
 

where 𝑁௣ is the quantity of expected bounding box 𝑙 and 𝑐 is the confidence score. 
 

Ⅳ. EXPERIMENTS 

We carried out two different sorts of studies to confirm 
the correctness and applicability of the suggested strategy: 
one in the laboratory (Section 4.1), and the other through a 
POC experiments (Section 4.2).  

Please be aware that in the studies, we employed every 
object detector model available to identify people in situa-
tions of video surveillance. Hence, all the data sets included 
in this study are video clips that were shot in fixed places 
and had small fields of view. 

  

4.1. Experimental Set-up 
In our research, we took use of two publicly accessible 

data sets of Performance Evaluation in Tracking for Sur-
veillance (PETS) 2009 [14] and Oxford Town Centre [15]. 

In the PETS 2009 data set, we used the 'S2-L1' video of a 
scenario outside with several people crossing each other, 
totaling 795 frames. Furthermore, we conducted the exper-
iments on the Oxford Town Centre data set displaying peo-
ple strolling through a busy street having 25 fps with a Full 
HD resolution. However, there is a limited amount of real-
world video surveillance data available to use due to the 
privacy regulations. Thus, we utilized a private data set 
made up of abount 130K training images (Private_T) and 
6K evaluation images (Private_E) as shown in Fig. 5. 

In the training and domain adaptation of the object de-
tector, the batch size and learning rate were specified as 64 
and 0.001, respectively. When trained with the private data 
set of Private_T, the network was trained over 210K itera-
tions having the learning rate of 10−3, the weight decay of 
5×10−4, and the learning rate decay value of 0.1 at 90𝑘 
and 120𝐾. A particular size was applied to the inputs for 
those benchmark techniques, and training was done with 
the default options utilized in each algorithm's official, pub-
licly available code. We adopted SSD [16] as a baseline 
backbone in the case of MobileNet v3 [17] and PeleeNet 
[18]. K-means clustering was used to obtain the anchor size 
for each training data sets. 

The tests were carried out using a Qualcomm Visual In-
telligence Platform with QCS603, which is intended for ef-
fective machine learning on Internet of Things (IoT) de-
vices. Mean Average Precision (mAP), extensively utilized 
in earlier research on object detection, is employed with an 
Intersection over Union (IoU) threshold of 0.5 to compare 
accuracy. 

   
4.2. Experimental Results and Discussion 

To show the performance of MSRB-PeleeNet, we eval-
uated its effectiveness with several earlier object detection 
models of YOLO v4 [19], MobileNet v3, PeleeNet. We me-
asured mAP values with the processing time on the camera 

  

Fig. 5. Examples of private dataset. 
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after training with same data sets for detecting a people in 
video surveillance sequences. 

Table 1 summarizes the performance of mAP and frame 
per seconds (fps) on two publics and one private data set on 
Digital Signal Processor chip. Our suggested model exhib-
its the greatest mAP values and a suitable processing time 
by a significant margin on an edge camera. Compared to 
the original PeleeNet, our model performs more accurately 
across all test data sets but at a slightly more computation 
time about 2−3 ms. In addition, we would like to underline 
that, when compared to the outcomes of the original object 
detector, our suggested domain adaption method's efficacy 
is noteworthy. The fps value is decreased in all models due 
to the short adaptation time required for understanding con-
text information, however it is insignificant for inference in 
the actual world. The updating of the original model re-
quires the most work, which is caused by fine-tuning. 

  
4.3. Proof-of-the-Concept Tests 

We conducted POC testing on a commercial video sur-
veillance service, which manages about 130K video cam-
eras, to validate if the suggested technique functions in a 
real-world context. Three hundred video cameras were used 
(for a week) among those to validate our method. 

All the implementations of the proposed back-end sys-
tem were deployed on Microsoft's Azure services. Every 
camera has a container-based client to interact with the 
server that records an image and its associated meta data 
(object detection results), together with their identity data, 
were transmitted to the storage server. 

Fig. 6 plots the exemplar result frames for four repre-
sentative test sequences that were validated from the test 
sequences. The results show several false positives along-
side a person or at the backgrounds, as indicated by the first 
column in Fig. 6. In addition, false positives were more fre-
quent than true negatives, and those errors were more likely 
to occur in the infrared mode of the camera. The following 
column in Fig. 6 displays the outcomes of domain adapta-
tion, where the accuracy of person detection was main-
tained but the number of false positives was significantly 

decreased. 

V. CONCLUSION 

We suggest an innovative end-to-end system architecture 
for continuous and gradual accuracy gain of video analytic 
algorithms, consisting of a hybrid combination of front-end 
and back-end intelligence. It is a continual process where 
the current model is self-evolving using context data in a 
continuous process of adaptation while maintaining the sys-
tem's scalability, adaptability, and expandability. We antic-
ipate that the suggested strategy will be crucial in enhancing 
commercial platforms with lifelong learning as intelligent 
video analytics continue to grow. 
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