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I. INTRODUCTION  

Today online world is our new home, many of our activ-
ities, in fact most of our activities like many students are 
going online classes, many of us actually book tickets 
online, most of our people actually also doing online shop-
ping, and the communities are also conducting online con-
ferences. In recent decades, networks have expanded from 
being a simple means of communication to being an inte-
gral part of nearly every aspect of our modern lives. The 
scale, speed, and dynamic complexity of networks have all 
increased. Cyberspace is what the Internet has become due 
to the widespread usage of computers and networking tech-
nology. Cyberspace, or the virtual environment enabled by 
computers and networks, is an environment where people 
all over the world may talk to each other using the Internet 
and other electronic means [1-2]. As a new frontier of peo-  
ple, cyberspace has reached a broad consensus. How to bet-

ter explore and represent cyberspace has attracted wide at-
tention around the world. Since 2012, the United States had 
launched the “Treasure Map Project” and the “mission X” 
to study real-time and interactive global Internet maps, 
which provided basic support for research on cyberspace 
information [3]. In 2014, Kaspersky lab in Russia released 
its new interactive cyber threats real-time map, which was 
dedicated to real-time representation of network activities 
[4]. In 2018, China Internet Security Conference (CISC) 
showed the smart city system, which integrated basic cyber 
information and showed it in a centralized way, so as to 
monitor and respond to cyber security attacks in real time 
[5]. 

Given the heterogeneous network paradigm [6] and dif-
ferent applications such as terrestrial communication net-
work [7], mobile marine network [8], aerostat platform [9] 
and satellite communication networks [10], the form of cy-
berspace is often complex and heterogeneous, so the re-
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search of this paper is based on complex-heterogeneous cy-
berspace [11].  

Visualization is a graphical representation that uses ap-
propriate graphs, charts and maps to represent the relation-
ships between data [12-13]. As a technical method of spatial 
cognition and representation, cartographic visualization is 
not only limited to the surface space, but also can be ex-
tended to the space beyond the surface [14-15]. Visualiza-
tion research is very important, and ground-based Internet 
cartographic visualization is even more important. While 
geographical data is related to spatial location and closely 
related to visualization. Cyberspace cartographic visualiza-
tion can be applied to typical business scenarios such as 
real-time monitoring of cyberattacks, traceback of cyber se-
curity events, communication support, and so on. So it is 
obviously significant for the research on complex-hetero-
geneous cyberspace cartographic visualization. 

In traditional geographical space, map as an important 
carrier of describing geographical phenomenon, which has 
been an indispensable tool for operational command since 
ancient times [16]. The traditional method of data visuali-
zation analysis is to draw corresponding graphs to make 
people better understand the data. Currently, it is needed for 
cyberspace map that can fully show the information of cy-
berspace, so as to establish the connection between cyber-
space and geographical space. The ultimate goal of the cy-
berspace visualization is to fully show cyber information in 
the form of cyberspace map and realize the visualization 
and digitization of cyberspace, and thus provide intuitive 
and valuable information for decision-makers to reduce the 
uncertainty of decision-making. The early stage of the de-
velopment of cyberspace visualization is faced with prob-
lems such as weak theoretical basis and immature technol-
ogy, while the introduction of big data and artificial intelli-
gence (AI) provides a new perspective for the research of 
cyberspace visualization [17]. 

Although computer vision and multimedia systems are 
not directly related to cartographic visualization, there are 
some applications of computer vision techniques that can 
be useful for processing and analyzing visual data in carto-
graphic visualizations. For example, computer vision tech-
niques such as object detection and tracking can automati-
cally identify and label features on a map, such as roads, 
buildings, and bodies of water. Image segmentation tech-
niques can be used to separate different regions or layers of 
a map, such as land and water or different types of land use. 
Machine learning techniques can also be applied to classify 
and predict patterns in geographic data. For example, clus-
tering algorithms can group similar features on a map, such 
as neighborhoods or land use types. Classification algo-
rithms can predict the likelihood of certain features or 
events occurring in a particular location, such as the likeli-
hood of flooding in a particular area. Additionally, multi- 

media systems can play a role in creating interactive and 
immersive cartographic visualizations that allow users to 
explore and interact with geographic data in new ways. For 
example, virtual reality and augmented reality technologies 
can create immersive experiences allowing users to explore 
geographic data in three dimensions. While cartographic 
visualization may not be directly related to computer vision 
or multimedia systems, some applications of these tech-
niques can be helpful in processing and analyzing visual 
data in cartographic visualizations and creating interactive 
and immersive experiences for users. 

Deep learning is a form of machine learning that takes its 
cues from the structure of the human brain; in the context 
of deep learning, this structure is known as an artificial neu-
ral network [18]. Deep learning has the advantages such as 
well learning ability and data-driven with high threshold. 
While along with various advantages of neural networks, 
the most common ones are classification and cluster. The 
strong combination of deep learning and neural networks is 
deep neural network (DNN), which happens to be close to 
the problem of cyberspace visualization. 

LLE is a dimensionality reduction technique that focuses 
on capturing the local structure of the data. It seeks a lower-
dimensional data representation to preserve the pairwise 
distances between neighboring points. The preservation of 
local relationships allows for a meaningful visualization of 
the data while reducing the dimensionality. LLE can be 
particularly valuable in complex and heterogeneous cyber 
data. Cyber data often consists of high-dimensional and 
diverse attributes, such as network connections, protocols, 
time-stamps, and other relevant features. Applying LLE 
can effectively reduce the dimensionality of this data while 
retaining its essential characteristics, enabling a more con-
cise and meaningful representation that captures the under-
lying structure and relationships of the data. First, it helps 
overcome the curse of dimensionality by reducing the di-
mensionality of the data, which can be beneficial for visu-
alization purposes. Second, LLE preserves the local struc-
ture of the data, allowing for a more accurate representation 
of the data's inherent relationships. It is imperative in com-
plex and heterogeneous cyber data, where understanding 
the local interactions and dependencies is crucial. Integrat-
ing vector autoregressive moving average (ARMA) for spa-
tiotemporal data modeling is another unique aspect of their 
approach. ARMA models are widely used for time series 
analysis, and by applying it to the spatiotemporal aspects 
of the data, it demonstrates their ability to capture and ana-
lyze temporal patterns and dependencies within the network. 
This integration enables a comprehensive understanding of 
how the network evolves, adding an essential temporal 
component to their visualization technique. Furthermore, 
the use of DNN for training is noteworthy. DNN has  



Journal of Multimedia Information System VOL. 10, NO. 2, June 2023 (pp. 123-136): ISSN 2383-7632 (Online) 
https://doi.org/10.33851/JMIS.2023.10.2.123 

125           

 

demonstrated exceptional capabilities in learning complex 
representations and patterns from data. By employing a 
DNN in the complex heterogeneous cyber cartographic vis-
ualization, we leverage the power of deep learning to ex-
tract meaningful features and representations from the 
cyber data, enabling a richer and more accurate visualiza-
tion of the network. 

The paper is structured as follows. Section 2 reviews the 
related work. In Section 3, we study the DNN based com-
plex-heterogeneous cyberspace cartographic visualization. 
The experimental results are shown in Section 4. Section 5 
concludes this paper. 

  

II. RELATED WORK 

In today's digital age, we are continually bombarded with 
information, most of it may or may not be reliable. Alt-
hough raw data is used to determine if something is genuine 
or incorrect, it is rarely presented to the public. It is easy to 
understand how rows upon rows of numbers may be diffi-
cult to interpret. Because of this, we commonly use data 
visualization to present patterns and trends in data more 
easily. In [19], the authors presented a novel distributed un-
ion-find algorithm that features asynchronous parallelism 
and k-d tree-based load balancing for scalable visualization 
and analysis of scientific data. In [20], the authors proposed 
a new perspective of ensemble data analysis using the at-
tribute variable dimension as the primary analysis dimen-
sion. Using matplotlib callbacks, visualization toolkits, and 
embedded HTML visualizations, the authors of [21] 
demonstrated three methods for incorporating interactive 
visualizations into Jupyter Notebooks. In [22], the authors 
introduced the interactive catchment explorer, a web-based 
interactive data visualization platform for investigating en-
vironmental information and model results. For the purpose 
of visualizing abstract gaze data, the authors of [23] pre-
sented a data processing approach based on gaze behavior. 
To accurately incorporate information about transcriptomic 
variability into the visual interpretation of single-cell RNA 
sequencing data, the authors of [24] presented den-stochas-
tic neighbor embedding and dens manifold approximation 
and projection, density-preserving visualization tools based 
on t-stochastic neighbor embedding and uniform manifold 
approximation and projection, respectively. A novel graph-
ical tool for the visualization of health data was published 
in [25], which may be used to quickly monitor patients' 
health condition remotely. In [26], the authors suggested a 
new supervised dimension-reduction approach termed su-
pervised t-distributed stochastic neighbor embedding, 
which achieved dimension reduction while maintaining the 
similarities between data points in both the feature and out-
come spaces. The suggested technique can handle high-di- 

mensional data, making it useful for both prediction and 
visualization applications. Combining illustration with data 
visualization was investigated in [27], where the authors 
presented interactive picture segmentation and gridding 
techniques. While many studies have focused on visualiz-
ing data in a homogeneous network, complicated heteroge-
neous cyberspace has received far less attention. 

The term "cyberspace visualization" refers to the use of 
visual language to explain and analyze a wide range of 
cyberspace phenomena and occurrences, such as the visu-
alization of network elements, network structure, and secu-
rity incidents. Cyberspace information system was de-
scribed in [28] as a parallel to geographic information sys-
tems, with the latter allowing for visualization based on a 
geographical coordinate system. This led to the proposal of 
a multi-dimensional and multi-view cyberspace infor-
mation system model. In [29], the authors created an archi-
tecture for visualizing the cyber battleground from border 
gateway protocol archive data, which included border gate-
way protocol connection information data from routers all 
over the world. In [30], the capability demand of the joint 
operation for cyberspace war scenario visualization system 
was used to do the system function analysis. In [31], two 
generalization approaches were presented after analyzing 
and measuring different forms of characteristic information 
of point cluster characteristics in cyberspace from four per-
spectives: statistics, metrics, topology, and themes. In [32], 
an ontology-based knowledge representation method for 
cyberspace situational information elements was proposed; 
this study aided in the understanding, modelling, and 
presentation of the cyberspace environment, and it served 
as a useful point of reference for the study of related tech-
nologies. In [33], the authors suggested the connotation and 
technological route of cyberspace visualization based on 
the idea of the "man-land-network" nexus and explain the 
visualization of cyberspace elements, cyberspace relations, 
and cybersecurity incidents. In [34], considering that the 
distance cartogram could express the characteristics of spa-
tial relational information in a simplified and deformed 
geographic space, a composite distance cartogram was de-
signed according to the cyberspace information visualiza-
tion model. To generate a cyberspace composite distance 
cartogram, the coordinate transformation principle and 
method for the nodes of network communities were pro-
posed. In [35], from the basic concept of cyberspace, based 
on the geospatial information grid, the authors studied the 
network space physical domain, logic domain and social 
domain partition method respectively. In [36], according to 
the spatial correlation degree of cyberspace and its elements, 
mapping methods for cyberspace were classified and the 
key technologies that needed to be solved were proposed. 
To the best of our knowledge, there are almost no researches on  
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using DNN to realize cyberspace visualization, even with 
regard to complex-heterogeneous cyberspace. However, 
the research on DNN based complex-heterogeneous cyber-
space is an essential part in cartographic visualization, 
which motivates this paper. 

  

III. CYBERSPACE CARTOGRAPHIC 
VISUALIZATION 

In light of the complexity and heterogeneity of carto-
graphic data in complex-heterogeneous cyberspace, it is 
necessary to reduce the data dimensionality and greatly re-
duce the workload of DNN. Dimensionality reduction pro-
cess reduces the number of random variables or features un-
der consideration in a machine learning algorithm. Data di-
mensionality reduction refers to the process of mapping a 
sample from a high-dimensional space to a low-dimen-
sional space through linear or nonlinear mapping to obtain 
a meaningful low-dimensional representation of high-di-
mensional data. 

  

3.1. Data Dimensionality Reduction 
Data dimensionality reduction methods are commonly 

divided into linear methods and nonlinear methods, which 
can be used for data visualization. Although the linear 
method is simple to calculate, it cannot find the nonlinear 
regularity of distribution of data, especially for the mani-
fold distribution data. In order to overcome the problem of 
nonlinear distribution of data in this paper, LLE is intro-
duced to reduce the data dimensionality. LLE unfolds the 
nonlinear manifold in a piece-wise manner. Each piece is 
unfolded and the unfolded pieces are put together to have 
the entire unfolded manifold. The steps of LLE is summa-
rized as follows. 

 
(1) Select neighbors and construct k-nearest neighbors 

(kNN) graph. 
(2) Reconstruct with linear weights. Find the reconstruc-

tion weights for each point based on their neighbors. 
(3) Map to embedded coordinates. Use the obtained 

weights to embed the points in the low dimensional 
subspace. 

 
The T-dimensional training dataset is represented by 𝑿 = ൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௤൯ ∈ ℝ்×௤ , while t-dimensional training 

dataset after dimensionality reduction is represented by 𝒀 = ൫𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௤൯ ∈ ℝ௧×௤ . The distance between 𝑥௠ 
and 𝑥௡ is denoted as 𝑑𝑖𝑠(𝑥௠, 𝑥௡). 

A kNN graph is formed using pairwise Euclidean dis-
tance between the data points. Therefore, every data point 
has k neighbors. Let 𝑃௠ denote the adjacent points set. Then 
compute the linear reconstruction coefficient 𝜔௠ for 𝑥௠. 

𝑚𝑖𝑛ఠ೘ ∑ ||𝑥௠ − ∑ 𝜔௠௡𝑥௡௡∈௉೘ ||ଶ௤௠ୀଵ . 
s.t. ∑ 𝜔௠௡ = 1, 𝑚 = 1,2, … , 𝑞௡∈௉೘ . (1)

 
The linear reconstruction coefficient 𝜔௠  is kept un-

changed, and the lower dimensional space coordinate 𝑦௠ 
corresponding to 𝑥௠  is solved. The constraint is ∑ 𝑦௠ = 0௤௠ୀଵ   and ∑ 𝑦௠𝑦௡் = 𝑞𝐼௤௠ୀଵ  , where 𝐼  is the 
identity matrix. 

  𝑚𝑖𝑛௬೘ ∑ ||𝑦௠ − ∑ 𝜔௠௡௡∈௉೘ ||ଶ௤௠ୀଵ . (2)
 
The core of LLE algorithm is the establishment of recon-

struction coefficient. Let Φ = ൣ𝑥௉௠(ଵ), 𝑥௉௠(ଶ), ⋯ , 𝑥௉௠(௞)൧ ∈ℝ்×௞denote the matrix composed of 𝑘 nearest neighbors 
of 𝑥௠, and the matrix composed of 𝑘 𝑥௠ is represented 
by 𝑿 = ൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௤൯ ∈ ℝ்×௤. 

  ||𝑥௠ − ∑ 𝜔௠௡௡∈௉೘ ||ଶ = ||𝑥௠ − 𝛷𝜔௠||ଶ = 𝜔௠்𝑀𝜔௠, (3)
 

where 𝑀 = (𝑋 − 𝛷)்(𝑋 − 𝛷), and because ∑ 𝜔௠௡௡∈௉೘ =1 , 𝑥௠ = 𝑋𝜔௠ . Therefore, 𝜔௠   can be calculated as fol-
lows. 

  𝑚𝑖𝑛ఠ೘ 𝜔௠்𝑀𝜔௠ 
s.t. 𝜔௠்𝐸 = 1, (4)

  
where 𝐸 = (1,1, ⋯ ,1)் , then Lagrange function is con-
structed as follows. 

 𝐿𝑎𝑔(𝜔௠, 𝜆) = 𝜔௠்𝑀𝜔௠ − 𝜆(𝜔௠்𝐸 − 1), (5)
  

where 𝜆 is the Lagrange multiplier. Taking the derivative 
of equation (5) with respect to 𝜔௠ and 𝜆, and we have 

  ቐడ௅௔௚డఠ೘ = 2𝑀𝜔௠ − 𝜆𝐸 = 0డ௅௔௚డఒ = 𝜔௠்𝐸 − 1 = 0 . (6)

  
According to equation (6), and we have 
   ቐ𝜔௠ = ఒଶ 𝑀ିଵ𝐸𝜆 = ଶா೅ெషభா . (7)

   
The calculation of low dimensional coordinates in equa-

tion (2) can be embedded by coefficients construction in 
equation (7). 

Given the above, the reconstruction coefficient 𝜔௠ of 
each 𝑥௠  contains local information in high dimensional 
data, and the characteristics of the related data can be well 
preserved in low dimensional data. The value of 𝜔௠ de-
termines whether dimensionality reduction can be com- 
pleted. 
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3.2. Data Training 
DNN is used to train the cartographic coordinates data 

obtained after data dimensionality reduction to reduce the 
workload of DNN. 

During DNN training, a certain number of samples are 
used to form a Mini-batch. Supposing that the dimension of 
each sample is 𝑇  and the number of samples is 𝑄 , then 
each Mini-batch is a matrix of 𝑇 × 𝑄. The whole training 
process will go through three parts: forward computation, 
backward computation and weight updating. Assuming that 
the layer number of neural network is 𝐿. In forward com-
putation process, the output layer 𝑂  after training is ob-
tained through input Mini-batch computation, and the pro-
cess can be expressed as follows. 

 

⎩⎨
⎧ 𝑦௟,௡(ଵ) = relu(∑ 𝑥௟,௠ × 𝑤௡,௠(ଵ) + 𝑏௡(ଵ)௠்ୀଵ )𝑦௟,௡(ఊ) = relu(∑ 𝑦௟,௠(ఊିଵ) × 𝑤௡,௠(ఊ) + 𝑏௡(ఊ)ொ ்⁄ ିଵ௠ୀଵ )𝑧௟,௡ = softmax(∑ 𝑦௟,௠(ఊିଵ) × 𝑤௡,௠(ఊ) + 𝑏௡(ఊ)ொ ்⁄ ିଵ௠ୀଵ ), (8)

 
where 𝑥 is the input Mini-batch data, that is, the data of 
input layer. 𝑦ఊ is the hidden layer result of  𝛾 th layer. 𝑤(ఊ)and 𝑏(ఊ) are the weight and bias of 𝛾th layer network 
respectively, and 𝑧 is the output value of forward compu-
tation. Additionally, relu( )   and softmax( )  are for-
ward activation functions corresponding to two different 
operations in forward computation process respectively. 

 
3.3. Data Model Design 

Data of cartographic in complex-heterogeneous cyber-
space mainly includes coordinates and other data such as 
device, application, data, IP, protocol and subject of net-
work. Several data different modeling methods are de-
scribed in terms of temporal and spatial attributes in order 
to realize complex-heterogeneous cyberspace cartographic 
visualization. 

  
3.3.1. Time Series Data Modeling 

There are many time series metrics in multidimensional 
data. Time series is basically a sequence where we record a 
metric over regular intervals. For a certain kind of network 
security event in complex-heterogeneous cyberspace, the 
risk distribution of such event can be forecasted by these 
metrics with time attribute. The following models are 
mainly used, which model to choose in practical application 
depends on the time fluctuation and dependence of data. 

 
3.3.1.1. ARMA model 
The ARMA model, which combines the AR model and 

the MA model, is a crucial tool for studying time series. 
Forecast index data across time is treated as a random se- 
quence by ARMA. This collection of random variables is 

dependent on one another, which symbolizes the timeless-
ness of the original data. Assuming that the impact factors 
are 𝑢ଵ, 𝑢ଶ, ⋯ , 𝑢௞, and the forecast object can be obtained 
by regression analysis. 

 𝑌௧ = 𝑏ଵ𝑢ଵ + 𝑏ଶ𝑢ଶ + ⋯ + 𝑏௣𝑢௣ + 𝐸௧, (9)
 
where 𝑌 is the observed value of the forecast object. 𝐸௧ 
is the error. As a forecast object, and 𝑌௧ is affected by its 
own changes according to the following equation. 

 𝑌௧ = 𝑏ଵ𝑌௧ିଵ + 𝑏ଶ𝑌௧ିଶ + ⋯ + 𝑏௣𝑌௧ି௣ + 𝐸௧. (10)
 
Error has dependencies in different phases, which can be 

defined as follows. 
 𝐸௧ = 𝜀௧ + 𝜇ଵ𝜀௧ିଵ + 𝜇ଶ𝜀௧ିଶ + ⋯ + 𝜇௤𝜀௧ି௤. (11)
 
Thus, the expression of ARMA model can be defined as 

follows. 
 𝑌௧ = 𝑏଴ + 𝑏ଵ𝑌௧ିଵ + 𝑏ଶ𝑌௧ିଶ + ⋯ + 𝑏௣𝑌௧ି௣ +𝜀௧ + 𝜇ଵ𝜀௧ିଵ + 𝜇ଶ𝜀௧ିଶ + ⋯ + 𝜇௤𝜀௧ି௤. (12)

 
3.3.1.2. ARIMA model 
Auto regressive integrated moving average (ARIMA) 

model is a forecasting algorithm that takes into account pre-
vious past values to forecast future values because it con-
siders that the information is found in those past values can 
be indicative of future values. The ARIMA model is defined 
by the three parameters 𝑝, 𝑑, and 𝑞. For a stationary time 
series, 𝑝 is the order of the auto regressive term, 𝑑 is the 
order of differences, and 𝑞 is the order of the moving av-
erage term. The number of lags in the dependent variable (𝑝), the number of differenced iterations (𝑑), and the num-
ber of lags in the error term (𝑞) are all displayed in the 
ARIMA (𝑝, 𝑑, 𝑞) model. For instance, the ARIMA model 
with parameters (1,1,2) contains a one-lag dependent var-
iable (1), a first-difference stationary (1) variable, and a 
two-lag error term (2) . In this case, the ARIMA model 
comprises a one-lag dependent variable (1), a zero-lag in-
dependent variable (0) , and a one-lag error term (1) . 
ARIMA (1,0,1) equals ARMA (1,1) if the series is level. 

The distinguishing factor between the ARIMA and 
ARMA models lies in the former's ability to convert non-
stationary time series into stationary time series via differ-
ential operation, thereby facilitating modelling. The spe-
cific equation of ARIMA is the same as ARMA except that 
a difference operation is added before modeling. 

  
3.3.1.3. ARCH model 

Autoregressive conditional heteroskedasticity (ARCH) 
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model conveys that the series in question has a time-varying 
variance (heteroskedasticity) that depends on (conditional 
on) lagged effects (autocorrelation). ARCH model takes all 
available information as condition and uses the form of auto 
regression to describe variance variation. For time series, 
available information is different at different time, and the 
corresponding conditional variance is also different. ARCH 
model can be used to describe the conditional variance with 
time variation. 

The basic idea of ARCH model is that under the previous 
information set, and the occurrence of a noise at a certain 
time is Gaussian distribution. The mean of the Gaussian dis-
tribution is zero and the variance is a quantity that changes 
over time (i.e., conditional heteroscedasticity). While the 
time-varying variance is a linear combination of the squares 
of the past finite term noise values (i.e., auto regression), 
which constitutes the ARCH model. 

Let the error variance be time-varying, that is, heterosce-
dastic and call it ℎ௧, then the basic ARCH(1) process is de-
fined as follows. 

 ℎ௧ = 𝑏଴ + 𝑏ଵ𝑢௧ିଵଶ . (13)
 

When a big shock occurs in the previous period 𝑡 − 1, it 
is more likely that the value of 𝑢௧ in absolute terms will 
also be bigger, that is, when 𝑢௧ିଵଶ  is small or large, the var-
iance of the next innovation 𝑢௧ will also be small or large. 
The ARCH(𝑞) model can be defined as follows. 

 ℎ௧ = 𝑏଴ + ∑ 𝑏௜𝑢௧ି௜ଶ௤௜ୀଵ . (14)
 
The ARCH(𝑞) model shows that the variance or volatil-

ity in a given period depends on the magnitudes of the 
squared err rs in the past 𝑞 periods. 

 
3.3.1.4. GARCH model 

To resolve the problem of negative estimates, the gener-
alized ARCH (GARCH) model is developed, which in-
cludes the lagged conditional variance terms as autoregres-
sive terms and uses few parameters to capture long lagged 
effects. 

Based on ARCH(𝑞) model, the GARCH (𝑝, 𝑞) model 
can be defined as follows. 

  ℎ௧ = 𝑏଴ + ∑ 𝜃௞ℎ௧ି௞ +௣௞ୀଵ ∑ 𝑏௜𝑢௧ି௜ଶ௤௜ୀଵ . (15)
  

The GARCH (1,1) model contains one lagged term of 
the conditional variance (ℎ)  and one lagged term of the 
squared error (𝑢ଶ). 

 
3.3.2. Spatiotemporal Data Modeling 
Each object, event or phenomenon of complex-heteroge-

neous cyberspace is associated with time and space, result- 

ing in a wide range of spatiotemporal application fields. 
Spatiotemporal data model is the basis of spatiotemporal 
data management, and the effective processing of spatio-
temporal data needs to be based on spatiotemporal database 
model. 

The metric with both spatial and temporal attributes in 
complex-heterogeneous cyberspace is the coordinates of 
devices or subject of network. In complex-heterogeneous 
cyberspace cartographic visualization, the risk distribution 
of network security event can be forecasted in order to re-
alize the “battle on map”. Taking coordinates in multidi-
mensional data as an example, the change of the coordinates 
of a node with time is a time series analysis problem, but if 
the coordinates of other nodes change, the coordinates of 
the node may also change accordingly. Therefore, the anal-
ysis of spatial data is also designed. The specific method is 
defined as follows. 

 ∑ ∑ 𝛷௖௛௖𝐶௖௛௖𝑢௧ିଵ = 𝑏௧ + ∑ ∑ 𝛩௖௛௖௞௜ୀଵ௤௝ୀଵ௞௜ୀଵ௣௞ୀଵ 𝐶௖௛௖𝑏௧ିଵ, (16) 
  

where 𝛷௖௛௖ is the autoregressive coefficient of complex-
heterogeneous cyberspace, 𝐶௖௛௖ is the coordinate weight 
matrix, 𝑢௧ିଵ is the autoregressive term, 𝑏௧  is the moving 
regression current deviation, 𝛩௖௛௖  is the moving regres-
sion coefficient, and 𝑏௧ିଵ is the moving regression devia-
tion term. The model used in this paper is vector ARMA 
(VARMA) model with spatial dependence. 
 

IV. SIMULATION RESULTS 

4.1. Setup 
The proposed DNN based complex-heterogeneous cy-

berspace cartographic visualization is implemented via 
three parts. First, LLE method is introduced to reduce the 
data dimensionality. Then, DNN is used to train the data af-
ter dimensionality reduction. Finally, in order to realize 
complex-heterogeneous cyberspace cartographic visualiza-
tion, the data model is designed with respect to temporal 
and spatial. The computational simulation is being executed 
on a computing equipped with an Intel i9-11900k processor 
operating at a frequency of 3.5 GHz, and a memory capac-
ity of 16 GB with a clock speed of 2,666 MHz. The simu-
lation is driven based on cyberspace datasets available on 
data.world. In the simulation, three algorithms are selected 
with comparison: a differential privacy enabled DNN learn-
ing framework (DNN-DP) [37], channel state information 
(CSI)-based DNN (CSI-DNN) [38] and convolutional au-
toencoder with residual blocks-DNN (CAERES-DNN) 
[39]. The evaluation of simulation results often involves the 
utilization of three classification metrics, namely precision 
ratio (𝑃), recall ratio (𝑅), and F1 score (𝐹). These met- 
rics are commonly employed to compare and assess the 
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quality of the aforementioned results. The value of 𝑃 de-
notes the level of accuracy in the recognition of coordinates. 
The value of 𝑅 represents the extent to which the visuali-
zation outcomes encompass the cyberspace. The metric 𝐹 
provides a comprehensive assessment of both precision (𝑃) and recall (𝑅). 

The model of DNN based complex-heterogeneous cyber-
space in simulation has a total of nine layers, among which 
the number of nodes in the hidden layer is 2048, the number 
of nodes in the top layer is 8992, and the number of nodes 
in the input layer is 400. The network parameters are ini-
tialized with Gaussian distribution with mean value of 0 and 
variance of 1. The size of Mini-batch is set to 200.  

 
4.2. Performance Analysis 
4.2.1. Data Model Test with DNN Based 

Fig. 1 describes the trends of the precision ratio of the 
model with four algorithms in complex-heterogeneous cy-
berspace cartographic visualization. Increasing the number 
of nodes in cyberspace has a negative effect on the accuracy 
of all algorithms, as shown in Fig. 1. However, the accuracy 
of the method suggested in this study remains consistently 
greater than the accuracy of the other three baselines. Com-
pared with sigmoid activation function, the method pro-
posed in this paper with ReLU activation function has three 
main changes, which are unilateral inhibition, relatively 
wide excitatory boundary and sparse activation. The com-
pared three baselines with sigmoid activation function have 
the fatal error that if the initial number of nodes in cyber-
space is large, most neurons may be in the saturation state 
and kill gradient, which will make the network difficult to 
learn. As a result, the precision ratio of the method sug-
gested in this study is greater than that of the other three 
baselines, and its theoretical accuracy is higher as well. 

In complex-heterogeneous cyberspace, Fig. 2 depicts the 
variation of recall ratio of four algorithms. As shown in Fig. 
2, the recall of the method presented in this study is greater 

than that of the other three baselines, and it rises as the num-
ber of cybernetic nodes rises. In a fully connected DNN 
structure, connections may be made between the bottom 
neurons and all of the higher neurons of the other three 
baselines, increasing the number of parameters and lower-
ing the recall. After dimensionality reduction, the benefits 
of the method suggested in this study become more appar-
ent when applied to cartographic data in complex-heteroge-
neous cyberspace. 

The F1 score of four algorithms for visualizing compli-
cated heterogeneous cyberspace is shown in Fig. 3. Preci-
sion and recall should be as high as feasible when assessing 
the simulation results. However, in most situations, the two 
ratios contradict one another. Therefore, the two ratios 
should be taken into account using the F1 score, which can 
provide an overall indication of the method's efficacy. I find 
that the F1 score is greatest for the approach described in 
this work, followed by DNN-DP, CSI-DNN, and CAERES-
DNN. Despite the CSI-DNN's high F1 score and poor pre-
cision ratio, keeping features invariant to the investigated 
impairments is the algorithm's stated goal. 

  

Fig. 1. The comparison of P of thefour DNN-based algorithms. 

  

Fig. 2. The comparison of R of the four DNN-based algorithms.

  

Fig. 3. The comparison of F1 of the four DNN-based algorithms.
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4.2.2. Data Model Test with Neural Network 

In order to verify the proposed method in this paper has 
a good performance in DNN based complex-heterogeneous 
cyberspace cartographic visualization. The other neural net-
work algorithms are selected for comparison, which are 
convolutional auto-encoders and hinge loss CNN (CAE-
HL-CNN) [40] and dual path CNN-recurrent neural net-
work (RNN) cascade network (DPCRCN) [41]. 

As can be seen from Fig. 4, Fig. 5, and Fig. 6, the preci-
sion ratio, recall ratio and F1 score of the proposed method 
are the highest comparing with other three neural network 
algorithms. CNN and RNN are essentially different though 
they can conduct sequence modeling. RNN has an order in 
time dimension, and the order of input will affect the output. 
CNN mainly obtains the overall information from local in-
formation aggregation and extracts the hierarchical infor-
mation from the input layer. The convolution kernel of 
CNN emphasizes the window in space, which is similar to 
the time series problem, but RNN does not consider the spa-
tial cases. The proposed method firstly reduces the dimen-
sionality of high-dimensional data to avoid the pressure of 
processing high-dimensional data. Although DNN cannot 

process the changes in time series, the proposed method 
based on spatiotemporal data modeling which can effec-
tively reduce the impact of the changes in time series. 

 
4.2.3. Training Time 

Four DNN-based algorithms are used in training time 
comparison, and the training time comparison of this paper, 
CAERES-DNN, CSI-DNN and DNN-DP is reported in Fig. 
7. With the increasing number of nodes in complex-hetero-
geneous cyberspace, the training time for forecasting the 
risk distribution of network security event is also growing. 
Even with the growing number of nodes in cyberspace, the 
training time is surprisingly close to two minutes. With 800 
nodes, the training time only increases by a little range, 
demonstrating the method's superior convergence perfor-
mance. ReLU activation function is used in this paper, and 
momentum optimization is added to make the model jump 
out of locally optimal easily, which is also reduce oscilla-
tion and accelerate convergence speed. 

 
4.2.4. Mini-Batch 

  

Fig. 5. The comparison of R of the four neural network algorithms.

  

Fig. 4. The comparison of P of the four neural network algorithms.

  

Fig. 6. The comparison of F1 of the four neural network algo-
rithms. 

  

Fig. 7. The comparison of training time. 
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LLE is used to reduce the data dimensionality in order to 
avoid increasing the training time of high-dimensional data. 
In this paper, a certain number of samples are used to form 
a Mini-batch. It is obviously that the proposed method us-
ing Mini-batch has a good performance in running time, 
which is decreased by orders of magnitude. The Mini-batch 
used in this paper is a small part of training dataset. The 
data is divided into several groups, and parameters are up-
dated according to the batch. In this way, data in batch 
jointly determines the direction of the gradient, so it is hard 
to deviate during descent and randomness is reduced. On 
the other hand, the number of batch samples is much 
smaller than the whole dataset, and the computation is not 
very large, which also reduces the running time (Fig. 8). 
 
4.2.5. Recognition Accuracy 

Data in complex-heterogeneous cyberspace mainly in-
cludes coordinates and other data such as application, IP 
and subject of network, if the data movement or data fault 
happens in data modeling, the selected model must recog-
nize movement and fault in time. As shown in Fig. 9, 
VARMA model has a relatively average fault recognition 
accuracy, which is also the highest, because it is analyzed 
and modeled from both spatial and temporal attributes in 
complex-heterogeneous cyberspace. The recognition accu-
racy of ARMA model is relatively the lowest, but it per-
forms well when the number of nodes ranges from 600 to 
700. When the number of nodes is less than 800, the recog-
nition accuracy of ARIMA model is better than that of 
ARMA model, but when the number of nodes is more than 
800, the recognition accuracy of ARIMA Model is suddenly 
lower than 90%. While the recognition accuracy of ARCH 
model and GARCH model is stable at more than 90%. 

  
4.2.6. Visualization Results 

Additionally, we compare the visualization results using 
the GARR from the internet topology zoo. GARR is Italy's 

national research and education network, which stands for 
"Gruppo Armonizzazione Reti della Ricerca" (Italian for 
Research and Education Network Harmonization Group). It 
provides high-performance network connectivity and ad-
vanced services to the academic and research community in 
the country. GARR provides its users with a wide range of 
services, including high-speed internet connectivity, vide-
oconferencing, cloud computing, virtual private networks, 
and access to e-learning platforms. Fig. 10 shows the visu-
alization results of the four methods on GARR. The visual-
ization result of DNN-DP, which exhibits no operations on 
nodes and edges, suggests a streamlined and concise repre-
sentation. This can be advantageous for situations where 

  

Fig. 9. The comparison of recognition accuracy with different 
models.

  

Fig. 10. The comparison of visualization results with different 
models. 

  

Fig. 8. The time comparison under different Mini-batches. 
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simplicity and clarity are prioritized, allowing for a more 
focused understanding of the network's structure. In con-
trast, CAERES-DNN adjusts the weight of edges in its vis- 
ualization result. This adjustment likely highlights the sig-
nificance or relevance of certain connections within the net-
work. By assigning different weights to the edges, the vis-
ualization can emphasize essential relationships and pro-
vide insights into the network's functional dynamics. Mean-
while, CSI-DNN ranks nodes by latitude in its visualization 
result. This arrangement based on latitude can introduce a 
geographical context, potentially aiding in interpreting net-
work components and their spatial relationships. This ap-
proach might be beneficial in scenarios where geographic 
factors play a role, such as studying regional network con-
nectivity or assessing network vulnerabilities across differ-
ent locations. The method proposed in the paper achieves a 
relatively full visualization result, which effectively cap-
tures the complex heterogeneous nature of the GARR net-
work. The proposed approach demonstrates a comprehen-
sive representation that incorporates multiple aspects of the 
network's structure and behavior by utilizing techniques 
such as LLE for dimensionality reduction and vector 
ARMA for spatiotemporal data modeling. The visualization 
results presented in Fig. 10 highlight the diverse perspec-
tives and visualization effects achieved by the different 
methods. By showcasing the unique contributions of the 
proposed method in achieving complex heterogeneous 
cyber cartographic visualization, the paper establishes its 
originality and potential value in the cyber security and 
safety applications field. 
   
4.2.7. Dimensionality Reduction 

This paper uses LLE as a dimensionality reduction tech-
nique for training cartographic coordinates data. In the fol-
lowing, we compare LLE with PCA, t-SNE, and Isomap re-
garding reconstruction error, neighborhood preservation, 
visualization quality, and computational efficiency. PCA is 
a linear technique that focuses on capturing the maximum 

variance in the data, while t-SNE and Isomap aim to pre-
serve the global and local structures, respectively. Recon-
struction error measures how well the reduced-dimensional 
data can be reconstructed back to the original high-dimen-
sional space. It quantifies the loss of information during the 
dimensionality reduction process. Lower reconstruction er-
ror indicates better preservation of the original data. Neigh-
borhood preservation: Since LLE aims to preserve the 
data's local structure, evaluating the nearest neighbors' 
preservation is essential. Visual assessment becomes cru-
cial if the purpose of dimensionality reduction is to facili-
tate visualization. Moreover, the computational complexity 
of the dimensionality reduction techniques should also be 
considered, especially for large-scale datasets. 

Table 1 shows the comparison of dimensionality reduc-
tion. The reconstruction error for PCA was calculated as the 
sum of squared differences between the original and recon-
structed data using the first two principal components. The 
neighborhood preservation score for t-SNE was calculated 
using the k-nearest neighbor graph with k=10. The recon-
struction error for PCA was calculated as the sum of 
squared differences between the original and reconstructed 
data using the first two principal components. The neigh-
borhood preservation score for t-SNE was calculated using 
the k-nearest neighbor graph with k=10. The reconstruction 
error for Isomap was calculated as the difference between 
the geodesic distances in the high-dimensional and low-di-
mensional spaces. The reconstruction error for LLE was 
calculated as the sum of squared differences between the 
original and reconstructed data in the high-dimensional 
space. In this example, LLE outperformed PCA regarding 
reconstruction error and neighborhood preservation, con-
sistent with its ability to capture nonlinear relationships and 
preserve the local structure. Isomap also performed well re-
garding reconstruction error and neighborhood preserva-
tion, but LLE needed to be more computationally efficient. 
t-SNE strongly preserved the local neighborhood structure 
but did not have an explicit reconstruction error. In terms of 

Table 1. Comparison of dimensionality reduction. 

Technique Reconstruction 
error Neighborhood preservation Visualization quality Computational efficiency 

PCA 0.21 Does not explicitly preserve neighbor-
hood structure 

May not capture nonlinear 
structure 

Linear, computationally effi-
cient 

t-SNE N/A Strongly preserves local neighborhood 
structure 

Can produce high-quality visu-
alizations 

Nonlinear, computationally 
expensive 

Isomap 0.1238 Strongly preserves global structure and 
can capture complex nonlinear structure

Can produce high-quality visu-
alizations 

Nonlinear, computationally 
expensive 

LLE 0.0523 
Strongly preserves local neighborhood 
structure and can capture complex non-

linear structure 

Can produce high-quality visu-
alizations 

Nonlinear, computationally 
efficient 
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visualization quality, all techniques can produce high-qual-
ity visualizations depending on the specific goals and char-
acteristics of the data. Therefore, visual inspection of the 
plots may also be an essential metric for evaluating the ef-
fectiveness of the different techniques. By evaluating these 
metrics, it can be determined that LLE is suitable for com-
plex heterogeneous cyber cartographic visualization. 
  

V. CONCLUSION 

This paper studies complex-heterogeneous cyberspace 
cartographic visualization. At first, we use LLE to reduce 
the data dimensionality. Then, a certain number of data 
samples are used to form a Mini-batch, and data after di-
mensionality reduction is trained in DNN. At last, in terms 
of temporal and spatial, we design the data model in order 
to realize cartographic visualization. Furthermore, the pro-
posed method is simulated based on cyberspace datasets 
available on data.world, and the comparison experiments 
demonstrate that the proposed method is outperforming in 
precision ratio, recall ratio, F1 score, training time and 
recognition accuracy. 

Although the proposed method has a good performance 
in training time comparing with the baselines. However, it 
is generally slow to train large DNN networks. In the future, 
we can find a network that can accomplish similar tasks, 
and then use part of its shallow network and parameters to 
perform simple extraction of input features, that is, transfer 
learning, which can not only speed up the training speed, 
but also require less training data. 
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