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I. INTRODUCTION  

Optical remote sensing image object detection is increas-
ingly finding applications across various domains. It is 
widely utilized in civilian sectors, such as search and rescue 
operations, disaster monitoring and prediction, as well as 
urban construction planning. In the military domain, the de-
tection and positioning of remote sensing objects enable the 
rapid conversion of remote sensing data into actionable in-
telligence. This capability proves invaluable in analyzing 
battlefield situations, accurately identifying the positions of 
potential targets, and subsequently formulating precise and 
timely military strategies [1]. As a result, achieving real-
time and accurate detection holds significant importance, 
profoundly impacting both societal and economic develop-
ment, as well as national defense efforts. 

In recent years, deep learning techniques have gained 
significant traction among researchers tackling video gen-
eration and analysis tasks. These techniques involve using 
a preceding set of video frames to predict the subsequent 
set of frames within a given video sequence [2]. Some 

scholars have also leveraged image resolution enhancement 
in videos to facilitate local motion detection, allowing for 
the prompt identification of unwanted motion within the 
video content [3]. Inspired by advancements in video image 
detection algorithms, we aim to employ deep learning algo-
rithms for object inspection and recognition in remote sens-
ing images. This endeavor bears similarities to the individ-
ual frame detection commonly utilized in video analysis. 
Currently, mainstream remote sensing object detection al-
gorithms predominantly fall into two categories [4-12]. In 
recent years, numerous scholars have dedicated their re-
search efforts to this field. For instance, Xue Yali and Yao 
Qunli have proposed a lightweight object detection method 
tailored to enhancing the accuracy of identifying small ob-
jects amidst complex backgrounds in optical remote sens-
ing images. This innovative approach tackles the challenges 
associated with detecting small objects, particularly when 
they are closely arranged. By incorporating a weighted fu-
sion feature network, each layer's feature map receives a 
dynamically learned weight coefficient during network 
training, thus enhancing the fusion of deep and shallow 
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layer features. Moreover, the introduction of the CIoU loss 
function expedites network convergence, meeting real-time 
requirements [13]. Yao Qunli, in another study, has put forth 
a one-stage multi-scale feature fusion method designed for 
aircraft object detection, addressing the issue of low detec-
tion accuracy concerning small-scale aircraft objects in 
complex scenes. Regarding dataset utilization and pro-
cessing, Vishal Pandey and colleagues have proposed sev-
eral methods to enhance object detection in aerial images, 
promising substantial improvements in current aerial image 
detection performance [14]. 

While one-stage detection algorithms like YOLOv3, 
YOLOv4, and SSD offer faster detection speeds compared 
to two-stage detection algorithms, their network models 
tend to be relatively large and may not meet the practical 
lightweight deployment requirements. Previous research 
efforts have partly addressed the challenge of relatively low 
detection accuracy in one-stage algorithms by enhancing 
the network structure and employing various techniques. 
However, these enhancements often increased the net-
work's complexity without achieving a satisfactory balance 
between detection accuracy and speed. 

In light of these challenges, this paper introduces a light-
weight multi-scale enhancement algorithm for remote sens-
ing image detection. This approach effectively extracts and 
fuses features from remote sensing objects at different 
scales, addressing issues of errors and omissions in the de-
tection process resulting from scale variations. Careful con-
sideration is given to the trade-off between speed and accu-
racy in detection, resulting in a well-balanced approach. 

To improve feature fusion at different scales, an adaptive 
spatial feature fusion mechanism is employed, leading to 
enhanced detection performance for remote sensing objects 
of varying sizes [15]. Additionally, the original algorithm's 
CIoU frame position loss function is replaced with the SIoU 
loss function [16]. The original CIoU loss function did not 
account for the mismatched direction between the required 
real frame and the predicted frame, which could lead to 
slow convergence and reduced detection efficiency. The 
SIoU loss function incorporates the vector angle between 
the real frame and the predicted frame, along with a rede-
fined penalty index, thereby improving network training 
convergence speed and remote sensing image detection ef-
fectiveness. 

Finally, the publicly available RSOD dataset [17] and 
NWPU VHR-10 [18] dataset was utilized as experimental 
data to evaluate the network's performance and compare it 
with other widely used object detection algorithms. 

  

Ⅱ. RELATED WORK 

2.1. Feature Fusion 
Feature fusion in object detection refers to the integration 

of features from various layers or modules within a network 
to enhance model performance and accuracy. The goal of 
feature fusion is to comprehensively leverage feature infor-
mation at different levels to capture multi-scale object de-
tails, enrich contextual semantics, complement features 
across various levels or modules, and facilitate cross-layer 
feature propagation. There are several feature fusion meth-
ods in object detection, each with different variants and im-
provements across various research studies. 

Among the commonly utilized feature fusion methods in 
object detection:Feature Pyramid Network (FPN) [19]: 
FPN is a widely adopted multi-scale feature fusion ap-
proach. It constructs a feature pyramid structure to facilitate 
cross-layer feature fusion. This method effectively captures 
semantic information from objects at multiple scales and 
provides rich contextual information. Pyramid Convolu-
tional Neural Network (PANet) [20]: PANet is an enhanced 
version of the feature pyramid network that introduces both 
top-down and bottom-up feature propagation pathways. 
This modification better exploits contextual information 
between feature maps of varying scales. Deformable Con-
volutional Network (DCN) [21]: DCN is a feature fusion 
method designed to capture local object detail by learning 
adaptive deformable convolution kernels. It introduces spa-
tial transformations in the feature extraction stage to adapt 
to object deformations and scale variations. Channel Atten-
tion Module (CAM) [22]: CAM is a feature fusion method 
that incorporates an attention mechanism. It adaptively ad-
justs the weight of each channel in the feature map to en-
hance the expression of essential features. Hybrid Feature 
Fusion Methods (e.g., BiFPN [23] and NAS-FPN [24]): 
These methods leverage diverse feature fusion strategies, 
including combining multi-scale feature pyramids with at-
tention mechanisms. Such approaches significantly en-
hance the performance of object detection models. This ar-
ticle provides an overview of various feature fusion tech-
niques in object detection, offering insights into their roles 
in improving model capabilities. 

Adaptive Spatial Feature Fusion (ASFF) [25]: ASFF's 
primary concept revolves around dynamically adjusting 
feature weights based on the object's representation require-
ments across different spatial scales. This approach learns 
weight coefficients to adaptively combine multi-scale fea-
tures, significantly improving the model's capacity to han-
dle object detection at various scales. One notable ad-
vantage of this technique lies in its capability to dynami-
cally fine-tune feature fusion weights, considering changes 
in object scale and contextual information. This adaptabil-
ity enhances the detection of objects with varying scales. 
Following experimentation, we have opted for this adaptive 
feature fusion mechanism to bolster the performance and 
resilience of our object detection model, particularly when 
addressing tasks involving multi-scale objects. It is parti- 
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cularly well-suited for fulfilling the feature fusion demands 
of remote sensing image object detection discussed in this 
paper. 

 
2.2. Loss Function 

  In the preceding section, we discussed feature fu-
sion methods in object detection. Now, our focus shifts 
to the modification of the loss function within the net-
work model. The YOLO series of algorithms introduced 
a transformative approach to object detection by framing 
it as a regression problem. This involves simultaneously 
predicting both the bounding box and category infor-
mation of objects in a single forward pass. The YOLO 
series comprises multiple versions, each incorporating 
distinct loss functions and refinements. YOLOv1 pri-
marily relies on two loss functions: bounding box regres-
sion loss and classification loss [26]. YOLOv2 builds 
upon YOLOv1 by introducing additional loss functions, 
including confidence loss, bounding box coordinate  
loss, category loss, and object loss [27]. Furthermore, 
YOLOv2 introduces multi-scale training and prediction, 
leveraging a more intricate grid division to enhance de-
tection performance for smaller objects. YOLOv3 fur-
ther refines the loss functions from YOLOv2 and intro-
duces loss functions tailored to feature maps of varying 
scales. 

Loss functions in object detection models encompass 
various components, including confidence loss, bounding 
box coordinate loss, category loss, object loss, and segmen-
tation loss for occlusion detection [28]. YOLOv4 [29] and 
YOLOv5 [30] build upon this foundation by incorporating 
components such as confidence loss, bounding box coordi-
nate loss, category loss, Landmark loss, and Focal Loss, 
among others. The specific implementations of YOLOv4 
and YOLOv5 may exhibit subtle differences in their loss 
functions, depending on specific implementation details 
and the libraries utilized. 

Furthermore, YOLOv5 introduces notable enhancements 
in the design of its loss function. It includes metrics like IoU 
(Intersection over Union), which primarily considers the 
overlapping area between the detection frame and the ob-
ject frame. Building upon IoU, GIoU (Generalized-IoU) ad-
dresses bounding box alignment issues [31]. DIoU (Dis-
tance-IoU), an extension of IoU and GIoU, incorporates 
distance information from the bounding box's center point 
to enhance detection accuracy. Additionally, CIoU (Com-
plete-IoU), based on DIOU, considers the aspect ratio of the 
bounding box's scale information, among other factors. 

However, these loss functions primarily aggregate 
bounding box regression metrics, taking into account fac-
tors such as the distance between the predicted box and the 

ground truth box, overlapping area, and aspect ratio. Nota-
bly, the regression loss in the aforementioned models does 
not address the problem of direction mismatch, potentially 
leading to slower model convergence. During training, pre-
dicted boxes may oscillate around ground truth boxes, re-
sulting in suboptimal results. 

To address this issue, the SIoU (Smoothed IoU) loss 
function takes into account the vector angle between re-
quired regressions and redefines penalty indicators. These 
indicators encompass four components: angle cost, distance 
cost, shape cost, and IoU cost. This comprehensive ap-
proach significantly improves both training speed and in-
ference accuracy. 

   

Ⅲ. REMOTE SENSING IMAGE  
DETECTION MODEL 

In order to tackle the challenges associated with ship ob-
ject classification and detection in high-resolution optical 
remote sensing images, this paper presents a novel network 
model for object detection, denoted as ASFF-SIoU-
YOLOv5n (Adaptively Spatial Feature Fusion with SIoU-
enhanced YOLOv5n) [32]. The overall structure of the pro-
posed network model is illustrated in Fig. 1. To begin with, 
the foundational network, YOLOv5n, is employed as the 
basis for this model. YOLOv5n represents the version of 
YOLOv5 (version 6.0) with the smallest feature map width 
and network depth. Building upon this foundation, ASFF is 
seamlessly integrated into the YOLOv5n network architec-
ture. This incorporation enhances the network's capacity to 
effectively fuse features at varying scales. Furthermore, a 
significant upgrade is made to the original YOLOv5n loss 
function, replacing it with the more advanced SIoU loss 
function (Smoothed IoU). This enhancement plays a pivotal 
role in achieving a delicate balance between lightweight de-
ployment, high-speed processing, and high-precision re-
mote sensing object detection. 

  
3.1. Adaptive Feature Fusion Mechanism 

The YOLOv5n object detection network implements the 
PANet structure to enhance the merging of multi-scale fea-
ture maps. PANet introduces a bottom-up refinement struc-
ture, which builds upon the existing FPN framework. It de-
parts from the original single-item fusion approach, adopt-
ing a two-way fusion method. This design aims to leverage 
both the high-level semantic information present in optical 
remote sensing images and the fine-grained details found at 
the lower levels, such as contours, edges, colors, and 
shapes. 

To fully exploit these diverse sources of information, the 
network incorporates an adaptive feature fusion mechanism 
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known as Adaptively Spatial Feature Fusion (ASFF). At the 
core of ASFF is the dynamic adjustment of weights during 
feature fusion across different scales. When combined with 
PANet, a fusion weight is learned for each layer scale. This 
adaptive weight allocation enables more effective utilization 
of features at different scales during the prediction of feature 
maps. Fig. 2 illustrates the structural framework of ASFF. 

The feature fusion network output in YOLOv5n is the 
feature map of level1, level2 and level3. Taking ASFF-1 as 
an example, the fused output consists of semantic features 
from level 1, level 2, and level 3, along with the weight α 
obtained from different layers. β and γ are multiplied and 
added together. As shown in Equation (1): 

 𝑦௜௝ଵ ൌ 𝛼௜௝ଵ ൈ 𝑥௜௝ଵ→ଵ ൅ 𝛽௜௝ଵ ൈ 𝑥௜௝ଶ→ଵ ൅ 𝛾௜௝ଵ ൈ 𝑥௜௝ଷ→ଵ. (1)

Among them, α୧୨ଵ，β୧୨ଵ，γ୧୨ଵ  are weights from different 

layers, x୧୨ଵ→ଵ，x୧୨ଶ→ଵ，x୧୨ଷ→ଵ are outputs from different fea-
ture maps. Since the scale of the object to be measured in 
the remote sensing image varies widely, by introducing the 
ASFF method to learn the fusion method of the parameters, 
other less useful hierarchical features can be filtered, and 
only the useful information of this layer can be retained, 
thereby improving the accuracy of object detection.  

   
3.2. Bounding Box Regression Loss Function Optimiza-
tion 

In computer vision tasks, the accuracy of object detection 
holds paramount importance, and this accuracy is signifi-
cantly influenced by the choice of the loss function. In the 
original YOLOv5n detection algorithm, various metrics 
such as GIoU, CIoU, overlapping area, and aspect ratio are 
employed to calculate the loss function, primarily based on 
bounding box regression. However, a notable limitation of 
this approach is its failure to account for the direction mis- 
match between the predicted box and the ground truth box. 
This shortcoming leads to slower convergence and reduced 
efficiency in the training process. 

To tackle this critical issue, Zhora introduces a novel loss 
function known as SIoU (Smoothed IoU). SIoU redefines 
the penalty metric by taking into consideration the vector 
angle between the required regressions. In the context of 
this paper, the original CIoU loss function is replaced with 

  
Fig. 1. AS-YOLOv5n network structure. The overall network structure of YOLOv5 consists of three parts: backbone is the main feature
extraction network part, which mainly extracts image features, Neck is the feature fusion part, and Head is the detection part. 

  
Fig. 2. ASFF structure diagram. The picture shows the cross-fu-
sion between the three feature layers extracted from the backbone.
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SIoU to enhance the efficiency of object detection. 
The SIoU loss function comprises four cost functions: 

angle cost, distance cost, shape cost, and IoU cost. 
 

3.2.1. Angle Cost 
The purpose of incorporating the angle-aware loss func-

tion component with the angle loss is to reduce the uncer-
tainty associated with distance-related variables. Essen-
tially, the model will prioritize aligning the prediction with 
either the X or Y axis (whichever is closer) before minimiz-
ing the distance along the corresponding axis. 

Angle cost calculation formula is as follows: 
 𝛬 ൌ 1 െ 2 ൈ sinଶሺarcsinሺ𝑥ሻ െ గସሻ. (2)
 𝑥 ൌ ௖೓ఙ ൌ 𝑠𝑖𝑛ሺ𝛼ሻ. (3)
 𝜎 ൌ ටሺ𝑏௖௚ೣ௧ െ 𝑏௖ೣሻଶ ൅ ሺ𝑏௖೤௚௧ െ 𝑏௖೤ሻଶ. (4)

 𝑐௛ ൌ 𝑚𝑎𝑥 ቀ𝑏௖೤௚௧ െ 𝑏௖೤ቁ െ 𝑚𝑖𝑛ሺ𝑏௖೤௚௧ െ 𝑏௖೤ሻ. (5)
 

3.2.2. Distance Cost 
The distance cost calculation formula is as follows: 
 ∆ൌ ∑ ሺ1 െ 𝑒ିఊఘ௧ሻ௧ୀ௫,௬ . (6)

 
in addition, 
 𝜌௫ ൌ ሺ௕೎೒ೣ೟ି௕೎ೣ௖ೢ ሻଶ.  (7)

ρ୶ ൌ ሺୠౙ౯ౝ౪ ିୠౙ౯ୡ౞ ሻଶ.  (8)

  𝛾 ൌ 2 െ 𝛬. (9)

3.2.3. The Shape Cost Calculation Formula is Defined as 
Follows 𝛺 ൌ ∑ ሺ1 െ 𝑒ିఠ௧ሻఏ௧ୀ௪,௛ . (10)

 𝜔௪ ൌ ห௪ି௪೒೟ห௠௔௫ሺ௪,௪೒೟ሻ. (11)

 𝜔௛ ൌ |௛ି௛𝑔𝑡|௠௔௫ሺ௛,௛೒೟ሻ. (12)

 
3.2.4. The Regression Loss Function Expression of the Fi-
nal Bounding Box is as Follows 

  𝐿௕௢௫ ൌ 1 െ 𝐼𝑜𝑈 ൅ ఆା∆ଶ . (13)
  

Ⅳ. EXPERIMENTAL DATA AND 
PROCESSING 

The experimental data used for network model training 
in this paper comes from the RSOD dataset released by Wu-
han University and NWPU VHR-10 dataset. 

   
4.1. Evaluation Index 

Before evaluating the model, it is very important to 
choose an appropriate evaluation metric.  

The model's accuracy is evaluated using the recall rate 
(R), precision (P), average precision (AP), and average 
mean precision (mAP) metrics in this paper; the model 
weight and network parameters are used to evaluate the 
complexity of the network model. The network model be-
comes more complex as the value of the two increases. The 
specific calculation method of each indicator is as follows:  

 𝑅 ൌ ்௉்௉ାிே. (14)
 𝑃 ൌ 𝑇𝑃்௉ାி௉. (15)
  𝐴𝑃 ൌ ׬ 𝑃ሺ𝑅ሻ𝑑𝑅ଵ଴ . (16)

  

Fig. 3. The scheme for calculation of angle cost contribution into the
loss function. Where 𝐁𝐆𝐓 and B are the center points of the predic-
tion frame and the real frame. 𝛔 is the diagonal distance of the mini-
mum circumscribed rectangle between the prediction frame and the
real frame. 

 

 
  

Fig. 4. Scheme for calculation of the distance between the ground truth 
bounding box and the prediction of it. Where 𝑪𝒘  and 𝑪𝒉  are the 
length and width of the outer rectangles of the real and prediction 
boxes, respectively. 
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𝑚𝐴𝑃 ൌ ∑ ஺௉೘௠ . (17)

 
4.2. Experiment Platform 

This experiment is based on the Ubuntu 18.04 operating 
system, Intel (R) Xeon (R) Gold 5218 processor, 39G 
memory, 11 cores, using the Pytorch 1.8.0 framework, and 
a GeForce RTX 2080 Ti graphics card for network model 
training with 11GB of memory.  

The Python version is 3.8 and the CUDA version is 
11.1.1. The model training is set to 300 iterations with a 
batch size of 16. The learning rate is dynamically adjusted 
during the training process, and the NAG optimizer with a 
momentum of 0.937 is used for optimization. In the model 
training, the periodic learning rate is adjusted. 

  
4.3. Dataset 

The experimental data used in the training of the network 
model in this study comes from the RSOD dataset [33] and 
NWPU VHR-10 [34] publicly available in China. 

 
4.3.1. RSOD Dataset 

The dataset used in this experiment comes from the do-
mestic public RSOD dataset. The RSOD dataset has a total 
of 2326 images, and the dataset images are from Google 
Maps. The remote sensing dataset contains four categories 
of aircraft, oiltank, playgrounds, and overpasses. Among 
them, there are 446 images of aircraft, including 4,993 sam-
ples of aircraft; 165 images of oiltank, including 1,586 sam-
ples of oiltank; 189 images of playgrounds, including sam-
ples of playgrounds 191; 176 overpass images, including 
180 overpass samples; the rest are background images. The 
dataset is divided randomly into training, validation, and 
test sets in a ratio of 7:1:2 in this paper. Fig. 5 shows some 
example images from this dataset. Fig. 5 visualizes the 
training progress of image classification and detection on 
the dataset. Fig. 6 shows the visualization of the image clas- 
sification and detection training situation of the dataset. 

  
4.3.2. NWPU VHR-10 Dataset 

The second dataset used in this experiment comes from 
the public NWPU VHR-10 dataset. The dataset contains a 
total of 650 object images of 10 categories. The number of 
marked instances are 757 aircraft, 302 ships, 655 oil tanks, 
390 baseball fields, 524 tennis courts, 159 basketball 
courts,163 track, field fields, 224 ports, 124 bridges and 477 
vehicles. Fig. 7 shows some example images of the dataset. 

 

Ⅴ. EXPERIMENTAL RESULTS AND 
ANALYSIS 

To assess the effectiveness of the AS-YOLOv5n algo- 

rithm introduced in this study, a series of experiments were 
conducted. These experiments involved comparing the AS-
YOLOv5n with three other commonly used lightweight ob-
ject detection algorithms. Additionally, the study sought to 

 
(a) Airplane (b) Oiltank 

 
(c) Overpass (d) Playgrond 

Fig. 5. Visualization of partial RSOD datasets. Four images illus-
trate the types of remote sensing targets in the dataset. 

 

(a) Airplane (b) Ship 

(c) Storage tank (d) Vehicle 

Fig. 7. Visualization of partial NWPU VHR-10 datasets. Four im-
ages illustrate four types of remote sensing targets in the dataset.

 

Aircraft Oiltank Overpass Playground 
  

Fig. 6. Dataset image classification detection training visualiza-
tion. 
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investigate the individual contributions of each module 
within the algorithms discussed in this paper. To achieve 
this, ablation experiments were performed, particularly fo-
cusing on the improved ASFF and SIoU loss function. 

All of the aforementioned experiments were carried out 
using the RSOD dataset for training the network model. 
Throughout the experiments, various factors such as equip- 
ment control, training hyperparameters, and the number of 
iterations were kept as fixed parameters. Subsequently, the 
acquired experimental results were thoroughly analyzed. 

  
5.1. Compared with Other Methods 

To validate the effectiveness of AS-YOLOv5n, compar- 
ative experiments were conducted using three target detec-
tion networks: YOLOv5n, YOLOv5s, and YOLOv3-Tiny. 
These experiments were performed on both the RSOD da-
taset and the NWPU VHR-10 dataset. During the training 
process, efforts were made to maintain as much consistency 
as possible in the parameters across the four network mod-
els. The training comprised 300 rounds, with an initial 
learning rate set at 0.01. The resulting experimental out-
comes are presented in Table 1. 

Table 1 highlights the remarkable performance of the 
proposed AS-YOLOv5n detection method, achieving an 
impressive mAP of 84.9% and 86.7% on the two datasets, 
respectively. Notably, on the RSOD dataset, AS-YOLOv5n 
outperforms other methods, with YOLOv3 yielding the high-
est mAP among the alternatives. The Tiny method shows a 
1% improvement over the lowest YOLOv5n method, and it 
exceeds the lowest YOLOv5n method by 3.3%. 

On the NWPU VHR-10 dataset, AS-YOLOv5n also ex-
cels, surpassing YOLOv5s, which yields the highest mAP 
among other methods, by 0.1%. Furthermore, AS-YOLOv5n 
outperforms the lowest-performing YOLOv3-Tiny method 
by a significant margin, with a 5.7% higher mAP. 

Moreover, AS-YOLOv5n exhibits favorable AP values 
for each remote sensing object category, as evident from 
Table 2. It's worth noting that AS-YOLOv5n achieves these 
impressive results with considerably lower model parame-
ters, weights, and computational resources compared to 
YOLOv5s and YOLOv3-Tiny. Furthermore, the time re-
quired to detect a single image is only 0.7 ms longer than 
YOLOv3-Tiny and 0.9 ms less than YOLOv5s. 

Combining Tables 1 and Table 2, it can be seen that com- 
pared with other lightweight detection methods, the exper- 
imental results on the RSOD data set and NWPU VHR-10 
data set show that the AS-YOLOv5n remote sensing image 
detection method proposed in this study achieves the high-
est mAP value, and the detection speed, model weight, 
model parameter amount and calculation amount are all ex-
cellent. Experimental comparison and verification show 
that the detection method proposed in this article balances 
detection speed and accuracy well. The AS-YOLOv5n al-
gorithm surpasses other algorithms in terms of mAP. It also 
has the characteristics of simplicity and is suitable for actual 
deployment needs. The visualization of the detection effects 
of the four models is shown in Fig. 8. 

  
5.2. Ablation Study 

In order to verify the effectiveness of the introduction of 
the ASFF and SIoU methods proposed in this paper, three 

Table 2. Comparison of experimental results on detection speed 
and network complexity on the RSOD dataset. 

Methods t/ms Weight /MB Gflops Parameters

YOLOv5n 5.2 3.75 4.2 1764577
YOLOv5s 6.3 13.8 15.8 7020913

YOLOv3-Tiny 4.7 16.6 12.9 8673622
AS-YOLOv5n 5.4 6.42 6.3 3135594

Table 1. Experimental comparison results of average accuracy of different detection methods on the ground. The table lists the test results 
of two public data sets RSOD and NWPU VHR-10. Judging from the single type detection results, our model performed well. From the 
average accuracy it seems that our model is better than other models.  

RSOD AP1 AP2 AP3 AP4   mAP
YOLOv5n 97.8 98.2 83.3 47.1   81.6
YOLOv5s 98.2 98.6 82.3 44.8   83.5

YOLOv3-Tiny 96.3 96.3 76.8 65.9   83.9
AS-YOLOv5n 98.2 97.5 86.8 57.2   84.9

NWPU VHR-10 AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 mAP
YOLOv5n 99.5 94.7 25.2 97.4 66.5 96.2 95.1 93.1 68.2 84.5 82.0
YOLOv5s 99.5 96.7 70.9 98.4 66.4 97.2 97.6 93.2 61.7 83.7 86.5

YOLOv3-Tiny 99.1 94.7 53.7 98.9 55.6 79.2 98.0 72.1 82.9 75.6 81.0
AS-YOLOv5n 99.5 97.3 61.4 97.8 73.0 88.4 98.9 90.5 71.3 88.4 86.7

The types in the ROSD data set include: AP1 (aircraft), AP2 (oiltank), AP3 (overpass), AP4 (playground). 
The types in the NWPU VHR-10 data set include: AP1 (airplane), AP2 (ship), AP3 (storage tank), AP4(baseball diamond), 
AP5 (tennis court), AP6 (basketball court), AP7 (ground track field), AP8 (harbor), AP9 (bridge), AP10 (vehicle). 
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sets of experiments were compared. Table 3s and Table 4 
present the results of ablation experiments conducted on the 
RSOD dataset, evaluating the performance of three differ-
ent methods, Table 5 record the results of ablation experi-
ments on the NWPU VHR-10 dataset, and obtain the com-
parison results of accuracy and network model complexity. 

As shown in Table 3s and Table 5: After changing the 
loss function in the original YOLOv5n network model to 

SIoU, mAP increased the performance by 0.9% and 0.7% 
on the two data sets respectively. On this basis, we contin-
ued to introduce adaptive After the feature fusion method, 
the overall effect has been greatly improved, and the mAP 
value has increased by 2.4% and 4.0% respectively. As 
shown in Table 4, after improving the loss function, the 
model complexity did not change, but the detection speed 
was improved, and the single detection time was shortened 
by 0.2s. After the adaptive feature fusion method was intro-
duced, the weight of the model increased by 2.67 MB. 
When the calculation amount and parameters are nearly 
doubled, the detection time of a single image only increases 
by 0.2 ms. It can be seen from Table 3 and Table 4 that after 
the SIoU loss function is introduced, the complexity of the 
model does not change, but the detection speed and detec-
tion accuracy are improved, indicating the effectiveness and 
advancement of the improved method. This shows that re-
placing the CIoU loss function of the original YOLOv5n 
with the SIoU position box regression loss function has 
been effectively verified; in addition, after the adaptive fea-
ture fusion method was introduced, the mAP obtained in the 
experiment and the AP value of each remote sensing target 
have greatly improved. The improvement, as shown in Ta-
ble 5, also effectively verifies that the introduction of the 
adaptive feature fusion method has good performance in 
detecting objects of different scales in remote sensing 

  

Ⅵ. CONCLUSION 

This paper presents a lightweight optical remote sensing 
image detection method based on an improved version of 
YOLOv5n. The method encompasses three key enhance-
ments: 

Firstly, it integrates ASFF into the YOLOv5n network 
structure, bolstering the network's capability to fuse fea- 
tures across different scales. 

Secondly, the loss function of YOLOv5n is upgraded to 
the advanced SIoU, contributing to improved detection ac-
curacy. 

Finally, the proposed algorithm undergoes rigorous test-
ing on a remote sensing image dataset and is benchmarked 
against three lightweight algorithms: YOLOv5n, YOLOv5s, 
and YOLOv3-Tiny. The experimental results clearly de-

Table 3. Comparison of accuracy test experimental results on the 
RSOD data set.  

Methods mAP AP1 AP2 AP3 AP4

YOLOv5n 81.6 97.8 98.2 83.3 47.1
YOLOv5n+SIoU 82.5 98.5 97.7 82.5 51.4

AS-YOLOv5n 84.9 98.2 97.5 86.8 57.2
There are four categories included in the data set: AP1 (aircraft), 
AP2 (oil tank), AP3 (overpass), AP4 (playground). 

Table 5. Comparison of experimental results on detection speed and network complexity on the NWPU VHR-10 dataset. 
NWPU VHR-10 mAP AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

YOLOv5n 82.0 99.5 94.7 25.2 97.4 66.5 96.2 95.1 93.1 68.2 84.5 
YOLOv5n+SIoU 82.7 99.5 95.8 16.6 97.2 67.5 91.5 98.7 90.3 82.7 87.3 

AS-YOLOv5n 86.7 99.5 97.3 61.4 97.8 73.0 88.4 98.9 90.5 71.3 88.4 

The types in the ROSD data set include: AP1 (aircraft), AP2 (oiltank), AP3 (overpass), AP4 (playground); 
The types in the NWPU VHR-10 data set include: AP1 (airplane), AP2 (ship), AP3 (storage tank), AP4(baseball diamond), 
AP5 (tennis court), AP6 (basketball court), AP7 (ground track field), AP8 (harbor), AP9 (bridge), AP10 (vehicle). 

Table 4. Comparison of experimental results on detection speed 
and network complexity on the RSOD dataset, 

Methods t/ms Weight/MB Gflops Parameters

YOLOv5n 5.2 3.75 4.2 1764577
YOLOv5n+SIoU 5.0 3.75 4.2 1764577

AS-YOLOv5n 5.4 6.42 6.3 3135594

  

YOLOv5n       YOLOv5s       YOLOv3-Tiny    AS-YOLOv5n
Fig. 8. Detection effect comparison chart，Different algorithms
are used to check the same image, and the results show that our
algorithm has certain advantages. 
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monstrate that the enhanced network excels in accurately 
and efficiently detecting variations in remote sensing im-
ages. 

Importantly, the proposed method significantly reduces 
errors and omissions compared to the original YOLOv5n 
algorithm. It outperforms traditional object detection algo-
rithms in terms of detection speed, network model size, and 
accuracy. This method effectively addresses the challenges 
associated with remote sensing image detection, particu-
larly erroneous and missed detections arising from scale 
variations. 

Furthermore, this method fulfills the requirements for 
real-time and rapid detection of remote sensing objects, 
making it suitable for applications with limited computing 
resources and high-speed detection. It finds promising ap-
plications in scenarios like ocean search and rescue, mari-
time intelligence, reconnaissance, and early warning. 
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