
Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 215-220): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.215

215

I. INTRODUCTION

 The importance of software is starting to be

progressively significant, and it is in use in many critical

applications, such as avionics, transportation control

systems, health systems (which we will focus on in this

paper), engineering, power systems, and sensor networks

[1]. As we know well, safety-critical systems can cause

mishaps and hazards. Software become dangerous if it can

follow to a threat i.e. cause other mechanisms to be

harmful or if it is controlling the hazard. Software is

thought of as harmless if it is not possible or doubtful that

the software might ever develop activities that would

follow a tragic result for the system that the software is

responsible for. Cases of catastrophic activities contain

loss of physical property, physical injury, or death.

Software engineering of a safety-critical system involves a

perfect understanding of the software’s part, and

collaboration together with the system [2, 3]. All systems

need the maximum care in their design, specification,

application, process and conservation, as they might lead

to damages or death, and also as an effect in material loss.

IT technology is used in a medicine more often than

people think. A microprocessors are used to control an

insulin pump is well known. The fact that a pacemaker is

mostly a computer is less recognized. Widespread use of

information technology in surgical actions is mysterious

for ordinary people. Modern tools are making innovations

in techniques such as spinal surgery, hip replacement and

many other surgical procedures. In those above cases,

computer controlled robotic devices are changing the

surgeons old-style instruments, and providing significant

profits to patients [4].

In this paper, we discuss about the software safety

assessment to classify and mitigate the risks related to

malfunctioning software in the medical devices of

healthcare systems.

II. SAFET-CRITICAL SOFTWARE

COMPONENTS IN HEALTHCARE

SYSTEMS

Software-based medical devices became a serious division

of the healthcare scene. Various health devices need to

interact together with gear, associate with clinic and

laboratory information systems, and work in extreme

circumstances. The improved expectations on such

devices and their rising universality have created

A Study on the Software Safety Assessment of Healthcare Systems

Author: Rafal Olenski1,* and Man-Gon Park2

Abstract
The safety-critical software in healthcare systems needs more and more perceptive excess among human observation and computer

support. It is a challenging conversion that we are fronting in confirming security in healthcare systems. Held in the center are the

patients—the most important receivers of care. Patient injuries and fatalities connected to health information technologies commonly show

up in the news, contrasted with tales of how health experts are being provided financial motivation to approve the products that may be

generating damage. Those events are unbelievable and terrifying, however they emphasize on a crucial issue and understanding that we

have to be more careful for the safety and protection of our patients.

Key Words: Safety-Critical Software Components, Software Validation Guidelines ISO 14971, IEC 62304, Fault Tree Analysis
Method for Safety-Critical Software Components.

Manuscript received June 18, 2015 ; Revised July 20, 2015 ; Accepted August 10, 2015. (ID No. JMIS-2005-15)

Corresponding Author(*): Rafal Olenski, Department of IT Convergence and Application Engineering, Pukyong

National University, Korea, +82-51-629-6245, rafalolenski@gmail.com.
1Department of IT Convergence and Application Engineering, Pukyong National University, Korea,

rafalolenski@gmail.com
2Department of IT Convergence and Application Engineering, Pukyong National University, Korea,

mpark@pknu.ac.kr

A Study on the Software Safety Assessment of Healthcare Systems

216

challenging design tasks for their creators. The most

important is to confirm safety. It has become more

demanding because of the instant growing complexity of

surrounded software. For the reason that software

engineering is a fundamental human process, it is not

likely or even impossible to create software without errors.

An important task for device developers is to recognize

and mitigate the hazards related with surrounding

malfunctioning software in devices. Health devices

integrate many types of features. For example,

malfunctioning electric modules, a defective software

component will have dramatic results. Though, other

different kinds of modules, classifying and calculating the

possible effects of malfunctioning software mechanisms

are additionally problematic. Because of the growth of

complexity, it results in an additional amount of

weaknesses. Another reason is that many devices share

similar mechanisms, such as controllers and pumps, those

elements have created path record. Engineers usually

deliver device developers with performance files for these

common elements. In contrast of software, it is often

patented and established by medical device developers for

a purpose in an exact device. Unfortunately, there is no

well-known path record for software components.

Therefore, the responsibility depends on a device

developers to guarantee that software-based medical

devices are harmless and efficient. To resolve such a

challenge, it demands knowledge in efficient risk

management work, understanding the software safety, and

the implementation of a risk management outlook.

Regardless of their significant benefits, software-based

services and systems can pose hazards to patient health [5,

6]. For instance, between 2005 and 2009, the US Food and

Drug Administration got over 56,000 reports of issues

linked to the use of infusion pumps [7]. Many of the safety

matters were marked out as software defects. In the United

Kingdom, the Medicines and Healthcare Products

Regulatory Agency informed a constant growth in medical

device adverse incidents, 9099 reports in 2009 [8]. The

British Medical Journal also stated an important growth in

medical device recalls and warnings [9]. Specified by the

criticality of certain software systems, e.g. EHR,

measuring the level of which the software actions

contribute to safety hazards in healthcare services must be

an fundamental part of the medical threat valuation

process and the general clinical safety matter [10].

 These safety dangers rise in medical environments that

are centered on the connections among many different

human, technical and high-tech elements. Understanding

and adjusting the complex links between the software’s

behavior and the emergence of the medical hazards (i.e.

possible to cause escapable/unintentional harm) is a great

challenge. Talking about this challenge at the medical

level needs close relationship among different investors,

mainly clinical authorities, health experts, safety analysts

and systems and software engineers [11].

Device producers are ethically, legally, and financially

responsible to guarantee that their development creations

do no damage. However, in spite of the huge amount

producers invest in authorizing the security of their

products, catastrophes continue to occur. For instance, the

Food and Drug Administration informed that: among 1990

and 2000 there were 200,000 pacemaker recalls because of

the software issues. In the U.S, from 1985 to 2005, there

were 30,000 fatalities accidents and 600,000 damages

caused by medical devices, 8% involved a defective

software [12].

Fig. 1. Infusion Pump

Fig. 2. Pacemaker

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 215-220): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.215

217

Fig. 3. Insulin Pump [21]

III. SOFTWARE VALIDATION

GUIDELINE FOR HEALTHCARE

SYSTEMS

The complication of the software implementation in many

clinical devices means that confirming their safety needs

complete testing with a compounding of other methods

such as design validation, implementation validation, and

remaining fault assessment. Failures in medical devices

don’t usually mark the headlines the way airplane or train

mishaps do. For patients, most likely, medical device

errors can have catastrophic results [13].

Fig. 4. Functional Safety Related Standards in Medical

Devices [15].

 International Organization for Standardization is an

international federation of nationwide standards bodies

(ISO member groups). The work of making International

Standards is normally approved by ISO technical

committees. Each associate group involved in a subject for

which a technical committee has been established, has the

right to be represented on that committee. International

organizations, governmental and non-governmental, in

collaboration with ISO, also take part in the work. ISO

cooperates diligently with the International Electro

Technical Commission (IEC) on all issues of electro

technical standardization to have medical systems

protected. [14]

Focusing on IEC 62304, which is a worldwide standard

for medical device software life cycle development, it isn’t

connected to functional safety. As an alternative, it reports

the “framework of life cycle processes with activities and

tasks necessary for the safe design and maintenance of

medical device software” and, according to ISO 14971,

the risk management associated with those processes [16].

 For the reason that IEC 62304 is not about functional

safety, it doesn’t describe acceptable failure rates in

numbers. Compliance with standards of IEC 62304

doesn’t suggest a safety integrity level (SIL) as does, for

instance, conformity to IEC 61508, which is worthless

without one and others. Even though IEC 62304 sets out

the procedures essential to create an efficient device, it is

not well known how the assessment of those procedures is

linked to the value of the device manufactured.

Act in accordance with the development processes was

defined in IEC 62304 we have to perform the essential

examination to guarantee that the new invention is safe.

First of all, engineers must start with the principle that all

software has errors, and these mistakes may lead to

disasters. Damages are the consequence of multiply

situations that begin with a wrong introduced into a design

or application. Faults may lead to errors, and errors may

lead to failures [15].

An additional well-known issue is to postpone risk

management till device designers have finished the

design- method that minimizes risk mitigation

opportunities. ISO 14971 states that, when developers try

to minimize risks, they must follow three design rules as a

priority. Modify the design to remove threats- If applying

the first rule is impossible, follow safety measures in the

device or manufacturing route, containing the skill to

identify circumstances that might follow to the threat’s

happening. If an adoption or implementation of those two

rules is difficult, adding documentation in an operator’s

guidebook to clarify precautions to take if circumstances

that might lead to a hazard to occur. [14]

Certainly, these values highlight an initial beginning to

A Study on the Software Safety Assessment of Healthcare Systems

218

risk management and therefore it gives more chances and

freedom for the device creator in decreasing threat in the

same time with the device progress [7].

ISO 14971 explains a risk as a possible source of

damage—physical harm or damage to the health of people

(patients, clinicians, and third parties), property, or the

environment. The basic requirements device developers

are to classify all known and predictable threats and

measure each hazard’s severity—the amount of its

probable effects. Common threats for exact devices are a

valuable beginning. According to ISO 14971 we can

classify hazards that creators never assumed to happen.

The important standard is that if a threat can actually occur,

be sure that it will. However, we will not concentrate on

the hazard’s probability of occurrence but on the damage

that may result [17].

Systems always include: hardware, the software, the users,

and the surroundings. Everything needs to be thought out

well during the developing of the software. Altogether

fragments of the system need to be harmless. Theoretical

or practical security begins at the system level of quality.

Security can’t be guaranteed if we just concentrated only

on software. We can create a software without ‘bugs’ and

implied several security features, however we can’t predict

how software will act with all components in the system.

The system safety analyses are the initial point to classify

software safety requirements essential to help to create the

software requirements specification. Such a requests have

to be delivered to the developer and attached into the

software requirements data.

During the whole project life cycle, the system safety

analysis must be performed. The software safety

examination procedure must last to evaluate the effects of

the systems analyses to declare that modifications and

answers at the system level are combined into the software

as required. Additionally, the software safety analyses

deliver input to the system safety analyses. The software

safety analyses are an important part of the complete

system safety examination and they cannot be conducted

separately. As a result, we have four security-relevant

elements of a system development route: 1. Classifying

threats and associated safety requirements, 2. Creating the

system to face its safety requirements, 3. Examining the

system to display that it comes through its safety desires,

and 4. Proving the safety of the system by manufacturing a

safety case [18].

IV. FAULT TEE ANALYSIS

METHOD(FTA) FOR SAFETY CRITICAL

SOFTWARE COMPONENTS OF

HEALTHCARE SYSTEMS

 Device developers have to emphasize on classifying

hazards first and then recognizing failure modes that can

follow to those dangers. FTA and failure modes effect

criticality analysis are one of the best tools. ISO 14971

contains this condition: The producer will guarantee that

those conducting risk management assignments contain

individuals with knowledge and experience proper to the

work given to them.

 Fault Tree Analysis (FTA) is a logic diagram showing

the routes to an event, it is a procedure to recognize threats,

and it is covered by a complete examination to find out

what could cause it. The event under the study is called the

‘Top Event’. The ‘Top Event’ causes are diagramed using

typical logic gate symbols (AND- the output incident

happens when all input events happen at the same time.

OR -the output happening occurs when at least one of the

input happenings occur).

 Fault Tree Analysis usually take five steps. The first is

to describe the undesired event to study, the ‘Top Event’ –

states the unwanted happening that can cause risk. The

second is to understand the system. We need to describe

the events that could let the ‘Top Event’ happen. For each

event express what would cause it. Carry on to analyze the

system. The third is a creation of the fault tree– after

selecting the undesired happening and analyzed the system

to identify the causal events. Define the events and their

relationships using AND and OR gates (more complex

gates are also possible). As the fourth step, evaluate the

fault tree- look for possible improvements that can

mitigate, reduce, or eliminate the events. Classify all

probable hazards effecting in a direct or indirect way of

the system. Lastly, control the hazards identified– after

recognizing the events and hazards, determine the

methods to decrease the possibility of occurrence.

In the case of software hazards, the common attention is to

define faults that will cause the system to fail to deliver a

system service, such as a monitoring system. Fault tree is

constructed to connect all the possible circumstances

together, to help classify the interrelationships of the

failures, which modules may cause them, and what result

there might be.

 Here is an example of a fault tree, as applied to the

insulin delivery system, a personal insulin pump for

people suffering from diabetes. It is an external device that

mimics the function of the pancreas. It uses a fixed sensor

to calculate the blood sugar level at periodic intervals and

then injects insulin to keep the blood sugar at a ‘normal’

level:

 Notice that this tree is incomplete, since only the

possible software faults are illustrated on the figure 2. The

probable failures related to hardware, such as blood

monitor, low battery, or sensor failure, patient over-

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 215-220): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.215

219

exertion or carelessness, or medical staff failure are not

included in this diagram

Fig. 5. Fault Tree Diagram of Insulin Delivery System

 The fault tree is useful tool to help with system risk

assessment tasks. Once the risks are recognised, there are

other valuations that need to take place. First, the

probability of the risk occurrence must be measured. This

is often computable, therefore numbers may be matched

based on MTBF (Mean Time between Failures), latency

effects, and other well-known objects. There may be other

immeasurable contributors to the risk probability, however,

such that these must be evaluated and estimated by the

specialists in the field. We should never make short this

process with critical systems. Lastly, the risk assessment

must contain the severity of the risk, an estimation of the

cost to the development in the happening the risk item

actually does take a place. That means all associated with

costs, containing human injury, program delays,

corruption to hardware, damage of data, etc.

 Pr (Probability of Software Failure in Insulin System)

= Pr(𝑆1) x (𝑆2) x (𝑆3)

= [Pr(𝑆11) x (𝑆12)] x Pr(𝑆2) x [Pr(𝑆31) x (𝑆32)]

=[Pr(𝑆11) x (𝑆121) x (𝑆122)] x Pr(𝑆2) x

 [Pr(𝑆311) x (𝑆312) x (𝑆32)]

 = 𝑝11x 𝑝121x 𝑝122x 𝑝2x 𝑝311x 𝑝312x 𝑝32,

if we denote that Pr(S*) = p*.

S* (An Event Cause Threats)

𝑆1(Incorrect Sugar level Measured)

𝑆2(Correct Dose Delivered at Wrong Time)

𝑆3(Delivery System Failure)

𝑆11(Sensor Failure)

𝑆12(Sugar Computation Error)

𝑆31(Insulin Computation Incorrect)

 𝑆32(Pump Signals Incorrect)

𝑆121,311(Algorithm Error) Compare dose to be delivered

with previous dose or safe maximum doses. Reduce dose

if too high.

 𝑆122,312(Arithmetic Error) A computation causes the

value of a variable to overflow or underflow. Maybe

include an exception handler for each type of arithmetic

error.

VI. CONCLUSIONS

 The medical device software development area is full of

procedures that software development organizations need

to conform with in order to market their products. In this

paper we have described these adjusting standards. This

paper is proposing one of the methods: Fault Tree Analysis

and discussed the principles relevant to software safety.

We focused on the standard for medical device risk

management ISO 14971:2007 which is recognize as a

compatible standard by FDA (Food and Drug

Administration). The European Union lists it as a

consistent standard to the MDD (Medical Device

Directive), IVD (In Vitro Diagnostics), and AIMD (Active

Implantable Medical Device). ISO 14971 fits perfectly for

the risk management. No matter the marketing region (US,

Canada, UE, etc.) is of valuable addition to medical

devices QMS (Quality Management System), it is the

most effective when it is integrated into companies QMS.

Furthermore, it will be essential to adopt risk management

from the initial stage until the product is done rather than

having it as an afterthought. Avoiding this could hinder the

development process as security or risk errors detected

later will require re-coding and analysis. Software

development teams need to practice secure software

development life cycle in their products to promote

software safety.

 Careful consideration of the above features and

practices will lead to the reduction of hazards of software

defects.

REFERENCES

[1] Committee on Patient Safety and Health Information

Technology of the Institute of Medicine, Health IT and

Patient Safety: Building Safer Systems for Better Care,

National Academies Press, Washington D.C., 2011.

[2] D. Wang, F. B. Bastani, and I. L. Yen, “Automated

Aspect-Oriented Decomposition of Process-Control

A Study on the Software Safety Assessment of Healthcare Systems

220

Systems for Ultra-High Dependability Assurance,”

IEEE Transactions On Software Engineering , Vol. 31,

No. 9, pp. 713-732, September 2005.

[3] P. V. Bhansali, “Software Safety: Current Status and

Future Direction,” ACM SIGSOFT Software

Engineering Notes, Vol. 30, No. 1, p.3, January 2005.

[4] R. R. Lutz, “Software Engineering for Safety: a

Roadmap,” Proceedings of the Conference on the

Future of Software Engineering, pp. 213-226, 2000.

[5] J. C. Knight, “Safety Critical Systems: Challenges

and Directions,” Proceedings of the 24th International

Conference on Software Engineering (ICSE), pp. 547-

550, 2002.

[6] R. H. Taylor and D. Stoianovici, “Medical Robotics in

Computer-Integrated Surgery,” IEEE Transaction on

Robotics and Automation, Vol. 19, No. 5, October

2003.

[7] R. Rakitin, “Coping with defective software in medical

devices,” IEEE Computer, Vol. 39, No. 4, pp. 40-45,

2006.

[8] R. Koppel, J. P. Metlay, A. Cohen, B. Abaluck, A. R.

Localio, S. E. Kimmel, and B. L. Strom, “Role of

computerized physician order entry systems in

facilitating medication errors,” The Journal of

Urology, 2005.

[9] U.S. Department of Health and Human Services Food

and Drug Administration, “Infusion Pump Premarket

Notification”, Total Product Life Cycle, 2010.

[10] I. Habli, A. Al-Humam, T. Kelly, and L. Fahel,

Medical and Health Care products Regulatory Agency,

Adverse Incident Reports, 2009.

[11] C. Heneghan, M. Thompson, M. Billingsley,

“Medical device recalls in the UK and the device

regulation process: retrospective review of safety

notices and alerts,” BMJ Open 1(1): e000155, May

2011, http://dx.doi.org/10.1136/bmjopen-2011-

000155.

[12] Health and Social Care Information Centre, “Clinical

Risk Management: it’s Application in the Manufacture

of Health IT Systems,” Report-ISB 0129, 2013.

[13] D. Jackson, “Software for Dependable Systems:

Sufficient Evidence?” Washington, DC: National

Academies Press, p.23, 2007.

[14] ISO 14971:2007, Medical Devices - Application of

Risk Management to Medical Devices, ISO Standard

Catalogue, Reviewed on 2010.

[15] C. Hobbs, Build and Validate Safety in Medical Device

Software, Medical Electronics Design, January 2012.

[16] IEC62304:2006, “Medical Device Software-Software

Lifecycle Processes,” Geneva: International Electro-

technical Commission, 2006.

[17] M. Thomas, “Engineering Judgment,” Australia:

Australian Safety Critical Systems Association, 2004.

[18] J. McDermid, “Software Hazard and Safety Analysis,”

Formal Techniques in Real Time and Fault Tolerant

systems, Lecture Notes in Computer Science,

Vol.2469, pp. 23-34, 2002.

AUTHORS

Rafal Olenski graduated with the

B.A. and M. A. in Physical

Education at the Gdansk

University of Physical Education

and Sport, Poland in 2010. He is a

research member of the Software

Engineering and Multimedia

Information Systems Lab. as well

as a Ph. D. student of the Dept. of IT Convergence and

Application Engineering, Graduate School, Pukyong

National University, Rep. of Korea. His research interests

are in Security Analysis, Safety Analysis, and Big Data

Analysis Methods for Healthcare Systems.

Man-Gon Park is a head

professor of the Dept. of IT

Convergence and Application

Engineering, College of

Engineering, Pukyong National

University, Republic of Korea

since 1981. Also he was the

president and chairman of the

Korea Multimedia Society

(KMMS). He served as the Director General and CEO of

the Colombo Plan Staff College for Technician Education

(CPSC) from 2002 to 2007, which is an intergovernmental

international organization of 29 member governments for

Human Resources Development in Asia and the Pacific

Region. He has been the visiting professor at the

Department of Computer Science, University of Liverpool,

UK; exchange professor at the Department of Electrical

and Computer Engineering, University of Kansas, USA;

and visiting scholar at the School of Computers and

information science, University of South Australia;

visiting professor at the Department of Computer Science

and Engineering, University of Colorado, Denver, USA.

He was dispatched to Mongolia and People’s Rep. of

China by KOICA on various projects as information

systems consultant. He has also embarked on consulting

works and conducted training programs in ICT on

individual capacity for Korean groups of companies,

governmental and non-governmental agencies and other

institutions in Korea. His main areas of research are

software reliability engineering, software safety and

security engineering, business process reengineering,

Internet and web technology, multimedia information

processing technology, and ICT-based human resources

development

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 215-220): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.215

221

