
Journal of Multimedia and Information System VOL. 2, NO. 3, September 2015(pp. 287-294): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.3.287

287

I. INTRODUCTION

Recently Internet has become one of the most
important parts of people’s lives. Nowadays more and
more people use it because internet provides a lot of
services which make human life easier and funnier. Of all
services social networks continuously gain its popularity
over the past years. Social network service (SNS) is a
service in which people can form relationships with, talk
to, communicate with and express their thoughts, images
and video to each other. SNS also a

llows users to share ideas, activities, events, and
interests within their individual network like friends or
friends of friends. Twitter is SNS which provides a service
of broadcasting short burst messages. It can also be
defined as a website which allows discovering interesting
people and following them or their burst messages. Twitter
obtains 302 million active users as of May 2015. Its 100
million users posted 340 million tweets per day (2012).
Twitter also handled 1.6 billion search queries per day.
Such big information generated by Twitter users can be
target for analyzing. Since now many researches have
been done to extract interesting pattern from tweets.
In order to get any data from SNS we are required to use
crawlers which are designed to look for particular

information users want to find. Generally, web crawlers
come into someone’s mind when crawlers are mentioned.
Web crawlers methodically visit web site, read visible
textual information, tags and hyperlinks, and then build
indexing for the data people are looking for. The main
purpose of web crawlers is to collect data so that users can
quickly get relevant web sites when they enter a search
term. However, crawlers in context of SNS are quite
different. Instead of crawling all pages available, SNS
offer using their API to deal with content or data
developers are expecting to extract from SNS. Twitter also
require developers to use Twitter API by using OAuth
which guarantees secure connection and keeping user
privacy safe. By changing its policy in 2013 Twitter also
set a list of limits to what kind of data and how many of
data can be extracted. Thus, Twitter API has become a set
of rules designed by Twitter in order to control usage of its
tweets by developers.

In this paper, we develop Twitter Crawler system
which enables us to extract and store Twitter data. We
implement our system in Java along with MySQL. The
application first extracts Twitter data after connecting to
Twitter API, and then obtained Twitter data is stored into
MySQL database. We also develop crawling strategies to
efficiently extract tweets in terms of time and amount.

Twitter Crawling System

Saydiolim Ganiev1, Aziz Nasridinov2 , and Jeong-Yong Byun3,*

Abstract

We are living in epoch of information when Internet touches all aspects of our lives. Therefore, it provides a plenty of services each of
which benefits people in different ways. Electronic Mail (E-mail), File Transfer Protocol (FTP), Voice/Video Communication, Search
Engines are bright examples of Internet services. Between them Social Network Services (SNS) continuously gain its popularity over the
past years. Most popular SNSs like Facebook, Weibo and Twitter generate millions of data every minute. Twitter is one of SNS which
allows its users post short instant messages. They, 100 million, posted 340 million tweets per day (2012)[1]. Often big amount of data
contains lots of noisy data which can be defined as uninteresting and unclassifiable data. However, researchers can take advantage of such
huge information in order to analyze and extract meaningful and interesting features. The way to collect SNS data as well as tweets is
handled by crawlers. Twitter crawler has recently emerged as a great tool to crawl Twitter data as well as tweets. In this project, we develop
Twitter Crawler system which enables us to extract Twitter data. We implemented our system in Java language along with MySQL. We use
Twitter4J which is a java library for communicating with Twitter API. The application, first, connects to Twitter API, then retrieves tweets,
and stores them into database. We also develop crawling strategies to efficiently extract tweets in terms of time and amount.

Key Words: Twitter, Crawler, SNS.

Manuscript received September 20, 2015; Revised October 2, 2015; Accepted October 12, 2015. (ID No. JMIS-2015-31)
Corresponding Author (*): Saydiolim Ganiev, 123, Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do, Korea, Dongguk
University Gyeongju Campus, +82-54-770-2114, byunjy@dongguk.ac.kr
1Computer Science and Multimedia Engineering, Dongguk University, Gyeonju, saydiolim@dongguk.ac.kr.
2Computer Science and Multimedia Engineering, Dongguk University, Gyeonju, aziz@dongguk.ac.kr

Twitter Crawling System

288

More precisely, we make the following contributions:
 As name suggests, the main purpose of our system is

crawling Twitter data, especially tweets, and store
them in database for the further use. We developed
Twitter Crawler which searches for tweets by using a
user input keyword. We utilized well-known java
library for Twitter API called Twitter4J in order to
handle Twitter data. This library enables us to set
connection to Twitter API and extracts tweets from
Twitter which match search criterion. Retrieved
tweets along with other Twitter data are stored in
MySQL database so that the user can conduct analysis
on them.

 In order to deal with Twitter API restrictions we
develop crawling strategies. They help our system
process more efficiently in terms of time and tweets
extracting capacity.

 We demonstrate the performance of our developed
system by providing screenshots.
The rest of the report is organized as follows. We

review the related works in Section 2. We describe the
proposed method in detail in Section 3. We present
implementation of the proposed system in Section 4.
Section 5 summaries and concludes the paper.

II. RELATED STUDY

Many studies have been conducted during past years
on SNS data analysis. Those researches provide various
results regarding importance, interestingness and
efficiency. However, most of them revealed different
aspects of SNS as a major part of Internet in people’s daily
life. In this section, we present studies aiming at exploiting.

Zhixeng Xu et al. [2] proposed a new framework
exploiting modified author-topic model, namely twitter-
user model to find interesting topics. Twitter users usually
publish noisy tweets about their lives, which prevent from
discovering proper topics of interests. For each tweet
authors applied extended (retrofit) author-topic model by
latent variable in order to discover if it is related to
author’s interest. User’s interest includes two parts:
original interest and retweeted interest. Experimental
results demonstrate that their approach outperforms
traditional approaches in terms of discovering user
interests on Twitter.

Xinyue Wang et al. [3] proposed an adaptive crawler
model to automatically capture popular-event hashtags.
While crawling tweets based on predefined search terms,
namely keyword, the proposed model identifies popular
event-related hashtags applying Simple Keyword
Adaptation (SkwA) algorithm or Refined Keyword
Adaptation (RKwA) algorithm. SKwA algorithm captures
and holds new hashtags within a particular period of time.
If after time frame, a number of hashtags are bigger than
threshold, the identified hashtags are placed into a list of
keywords. This process repeats each time frame allowing
new hashtags to be added into a search term list. Results
show that the proposed method allows collecting more
relevant tweets and reduce amount of irrelevant ones.

Kim Younghoon et al. [4] proposed a probabilistic
algorithm to recommend tweets and friends to Twitter
users. Authors apply MapReduce to present parallelized
algorithm to handle big data that includes tweets and
relationships between the users. Expectation
Maximization (EM) algorithm also is built to learn
parameters of the proposed generative model. Authors also
present the ranking algorithms to recommend top-K
followees and top-K tweets to users. Experimental results
demonstrate TWITOBI outperforms content based
recommendation methods in terms of scalability and
effectiveness.

Min-Chul Yang et al. [5] proposed a novel statistical
and unsupervised model called Trend Sensitive-Latent
Dirichlet Allocation (TS-LDA) to recommend interesting
tweets to users. First, they exploit LDA to find latent
topics and then its modified version to uncover trends in
Twitter. In content-based proposed method, each
potentially interesting tweet is indicated by its
interestingness measure that represents how interesting a
tweet might be to users. Thus, if a tweet possesses
interestingness score higher than threshold they are
identified as an interesting tweet. Experimental results
show that the proposed method outperforms several
traditional methods in tweet interestingness prediction and
tweet classification.

Melike Yigit et al. [6] proposed two topology based
recommendation systems that consider not only user
relationships but also their actions and mentions. In
Extending topology based recommendation algorithm user
relationships are classified in four depths. Each depth
represents followers of previous followers group. In
extending Friends of Friends (FOF) algorithm, the same
steps must be taken with only three depths. Using users
score measure in the chain of followers are recommended
to the target user only if they are not already followers of
him. Experimental results show that the proposed
algorithms outperform graph-based and Conceptual Fuzzy
Set based algorithms in terms of best precision.

Hassan Saif et al. [7] proposed an approach called
SentiCircles to analyze tweets for sentiment detection.
SentiCircles is lexicon-based approach which builds a
dynamic representation of words to discover their
semantics.This enables to update their sentiment strength
and polarity in a particular lexicon. In order to find word’s
contextual semantics, they apply distributional hypothesis
in which words appear in similar contexts are likely to
have similar meanings. The proposed method allows
detecting sentiments at both entity level and tweet level.
Experiments are conducted with three tweet datasets and
using different sentiment words lists. Authors declare their
approach outperforms previous entity-level approaches
and perform better than SentiStrength at tweet-level.

Luca Cagliero et al. [8] presented a new data analysis
system called TFC Analyzer (Twitter Flipping Correlation
Analyzer) to capture interesting events such as topic trend
analysis, context-aware service profiling and outlier
detection. By analyzing tweets TFC Analyzer supports to
uncover frequent itemsets in order to discover contrasting
and potentially interesting features. Their main focus is on

Journal of Multimedia and Information System VOL. 2, NO. 3, September 2015(pp. 287-294): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.3.287

289

comparing itemsets at different abstraction levels.
Therefore, they obtain a new pattern, the Strong Flipping
Generalized Itemset (SFGI) from tweets which consist of
generalized itemset X and its descendants showing
correlation change regarding itemset X. They apply LCM-
based (Linear Time Closed Itemset Miner-based) itemset
mining algorithm along with ad-hoc post-pruning phase.
Experiments have been conducted on both real and
synthetic dataset, and its result shows the proposed
method is effective in discovering interesting patterns.

III. PROPOSED SYSTEM

The proposed system is built to crawl, store, analyze
data, and, if needed, to make recommendation or alert on
topic we will work on. Our proposed system consists of
three major parts: Twitter crawler, database and alert
levels modeling

First step is to construct Twitter Crawler. Firstly, our
application gets connection to Twitter to extract data.
When we retrieve Twitter data from Twitter, a crawling
strategy must be considered carefully. The crawling
strategy represents the way how to efficiently deal with
Twitter rate limits. Once data is extracted, it is stored in
database for further analysis. In the second step, we build
alert level modeling. In context of our system, alert
modeling represents suicide-related tweet detection. Firstly,
we list up all significant words or phrases which can be
related to suicide. Then we set weights to all those words
in order to rank tweets while analyzing them.

3.1. Twitter Crawler

In this subsection, we talk about extracting and
storing Twitter data. Specifically, we will overview the
overall design of our system, present crawling strategy,
describe constructed database and explain the proposed
method in details.

The design of the system is shown in Figure 1. It
describes the overall process of the performance of our
system. From the Figure 1, we can see that application in
the system plays main role on manipulating flow of data.

Fig. 1. The overall system design.

Sequence diagram depicted in Figure 2 shows the flow of
performance of our system in details. The process starts
when an application sends message to Twitter API in order
to get tweets. In response, Twitter sends back json files
that stores tweets in human-readable way. Tweets are
stored in database going through the application since they
need to be converted into sql-readable state. In the next
step, we analyze tweets. Because tweets include not only
interesting patterns but also needless data, they have to be
preprocessed. During the preprocessing step, we remove
unnecessary words, numbers and symbols from tweets.

Fig.. 2. The workflow sequence diagram.

3.2. Crawling Strategy.

Twitter sets variety of rate limits in order to control
third-party applications while they are acting on behalf of
users to extract or manage Twitter data. In this section we
explain our strategy to deal with Twitter limitations [9].

Firstly, Twitter rate limits include user and application
authentications which are a way of allowing third-party
applications to access user data without exposing his
password. OAuth is a security protocol for Web
applications. Twitter allows you to access private data
through OAuth as an alternative to standard HTTP
Authentication. Secondly, one of the important features of
Twitter rate limits is the number of request one can do
every 15 minutes. Further, we talk about those two types
of authentications and provide ways to handle them.

3.2.1.User-auth.

Twitter supports two different types of authentication.
The first type is user authentication which allows an
application to act on behalf of a user, as the user. This type
of authentication is used when an application need to
create or edit status tweets. Alike application-auth, user-
auth are not limited to activities the application can
perform on behalf of the user. We can see how our
application obtains user credentials to perform for the sake

Twitter Crawling System

290

of the user as shown in Figure 3.

Fig. 3. User authorization.

In order to crawling Twitter data, we need to provide

our credentials in terms of application tokens to Twitter
API OAuth. Thus, Twitter prohibits accessing public
Twitter data without authentication at all. To deal with first
limit related to user-auth, we suggest the following two
strategies:
 Obviously, one of the simplest but efficient ways of

crawling as much data as we want is to create more
Twitter user accounts, which does not seem difficult.
The problem may arise when we need them to operate
concurrently. Since while managing crawling a lot of
user accounts as well as properly redirecting data to
database tables, one can meet serious issues. However,
with high constructing of a logical flow of the system
we can manage this issue to get more tweets
concurrently.

 The second strategy is related both to user-auth and
application-auth. Since time plays critical role on both
limits. Therefore, it is very important thing when we
deal with Twitter API. As mentioned before, Twitter
segmented time into 15 minutes intervals. Thus, it is
vital to scatter requests within the given time interval
so that the distance between each request can be equal.
In previous example, request limits for user is 180 and
the limit for application is 450. Let’s take user rate
limit. If someone spends all 180 requests in, say, 10
minutes, it means, first, he has to wait 5 minutes
doing no crawling until next 15 minutes windows
opens. Secondly, he probably extracts Twitter data he
extracted during 10 minutes using only some number
of 180 requests. This might mean other requests are
used for just nothing. Therefore, it is critical issue to
spread all request uniformly in order for the system to
perform efficiently.

3.2.2. Application-auth.

The second type of authentication is application-only
authentication. In this type of authentication, an
application does not need to fully act as a user. Therefore,
to login in providing user’s password and logins is not
required. This type of access is very appeal to such
developers that look for Twitter public data such as
crawling tweets.
 Our last strategy is associated with application-auth.

We need one more credentials to gain application-auth.
The last credential is called bearer token which is
needed for Twitter to allow our application to get
limited access to the user activities but with more
requests. Once actions from Figure 3 are done, we
combine key and secret tokens together and encode it
with base64 encoding. New encoded key is sent to
Twitter to get a bearer token. Twitter provides a bearer
token which is used to get application-auth. Note that
Twitter allows developers to create more than one
application per user. Considering that we build as
many applications as we need. Then we set
application-auth to each application. Each application
comes with 450 requests per window, for example. 10
applications means 4500 request. Application-auth
gives us such opportunity. Also, rate limits of user-
auth and application-auth do not overlap. They do not
impact on each other to reduce number of requests.

 Since application-auth is also restricted by a number
of requests per time window, applying the same
strategy proposed previously is efficient. Constantly
observing requests given from Twitter API is very
critical. Therefore, we develop and add automatic
time adjusting function to our system. Thus, this
enables us to set a number of request performed by a
specific time interval, which allows us to crawl more
tweets.
Those strategies proposed are keys for the system to

perform more efficiently. Thus, this allows us to deal with
Twitter rate’s limits and retrieve more tweets as we
expected.

3.3. Database Design

We describe database to store Twitter data. We create
MySQL database to save retrieved tweets. Figure 4 shows
the database scheme in which tweets and analysis results
is stored. Proposed database consists of 6 tables:
AdminInfo, Keyword, UserInfo, Tweets, Analysis and
TweetCategory. Each table possesses its unique name
that indicates what kind of information it stores. We
review each table and its attributes in detail.

AdminInfo table. This table is designed for storing
customer information. It includes 3 attributes: admin_id,
twitter_ap_name, server_name.

Keyword table. The table is constructed for storing
keyword information. Keyword table includes 4 attributes:
keyword_id, input_word, type and language.

UserInfo table. As name suggests, UserInfo holds
information about Twitter user account. It is critical to
have such kind of data since it is essential part of social

Journal of Multimedia and Information System VOL. 2, NO. 3, September 2015(pp. 287-294): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.3.287

291

data analysis. UserInfo table is comprised of 4 attributes:
userinfo_id, screen_name, location and language. Tweets
table. This table plays the major role in database. Tweets
table stores nearly all interesting information

Fig.4.Database E-R diagram

important for data analysis. It consists of 6 attributes:
tweets_id, text, type, location, created_at, and saved_at.

Analysis table. The table is designed as storage for
output data which come out after tweets are analyzed. This
table is the most important one in terms of data analysis
since it stores only meaningful data as opposed to previous
tables which store raw data. The table consists of 3
attributes: analysis_id, anaylsis_type, and analysis_result.

TweetCategory table. This table can be seen as
supplement to Tweets table. However, this table contains a
few important features. It includes 3 attributes:
tweetcategory_id, count and category_name.

IV. IMPLEMENTATION

In this section, we explain how we implement our
system in detail. We present system functionalities with
figures and descriptions. Figure 4 demonstrates the main
window of java GUI application. The application of the
parts which represent three windows in the application.

1. Crawl Tweets. By clicking this button a user is re-
directed to Crawling Window. As the name suggests, in
this window, we are able to extract tweets and its related
data from Twitter. Search for tweets can be done by
adding keyword. The application returns only those tweets
in which words match with keyword.

2. Manage Tweets. This button represents Manage
Window in which a user can deal with tweets stored in a
database. The user will be offered with several functions
such as getting tweets from database by keyword and
username, delete tweets by keyword and download all
tweets as a one csv file.

4.1. Crawl Tweets
In Figure 6, we can see Crawling Window. The

window enables a user to search for tweets over Twitter. In
order to get tweets, the user needs type the word he wants

Fig.5. Main window

to find tweets with in the text field. Next, he presses get
button in order to start crawling process. The application
returns at most 100 tweets with a particular keyword user
added. We implement our system in such way that no
duplicate tweets are allowed. In addition, in order to
efficiently use requests given by Twitter API in 15 minutes
window, we set timer which run program in particular
period of time automatically. This gives us two benefits:
no need to manually managing tweet retrieving process
and avoiding wasting requests for duplicate tweets.
Moreover, we add text area to display all tweets which are
extracting from Twitter. This gives use visualization to
observe crawling process.

Fig. 6. Crawling Tweets by keyword.

4.2. Manage Tweets

Figures 7-8 shows the functionalities of managing
Window. Managing Window consists of 4 parts: extracting
tweets from a database by keyword and username,

Twitter Crawling System

292

deleting tweets by keyword and downloading database as
a csv file.

Figure 7 demonstrates retrieving tweets stored in a
database searching by a keyword. In order to get tweets
the user is interested in, he needs to put keyword or
username on text field. If there is keyword or username
similar to input words, the application returns tweets and
display them in the text area.
Usually tweets extracted are more than they can fit one
text area. In that situation, the user can scroll down with
mouse to see all tweets.

Fig 7. Extracting tweets from database by keyword.

The next functionality for managing tweets is shown
in Figure 8. A user can delete unnecessary tweets stored in
a database by adding keyword. This function is efficient
since tweets can become out of date. Therefore, removing
such tweets makes database simpler and saves its capacity.
In order to eliminate unwanted tweets the user are asked to
input keyword. The application reads keyword, deletes
all tweets with this keyword and displays them in the text
area. Additionally, pop-up window is shown to inform that
the process has done successfully.

Fig. 8. Deleting tweets from a database by keyword.

V. CONCLUSION

In this paper, we developed Twitter Crawler
application. We implemented the application on java
exploiting along with MySQL. With Java we built
Graphic User Interface (GUI) which includes several
functionalities. MySQL was used to construct a database
for tweets to be stored. In our example, we constructed
twitter database with tweets table. This table contains 4
columns: tweeted, username, text and keyword.

The java application consists of 3 windows: main and
2 inner windows. Main Window serves as an introduction
to inner windows. From main windows we can visit 2
other windows: Crawling Window and Managing Window.
In Crawling Window, we were asked to input a keyword to
search for corresponding tweets which match search
requirements. The results were visualized in the text area.
Managing windows includes lots of functionalities:
Retrieve tweets from a database by keyword and username,
delete tweets from a database by keyword and download
all tweets as a csv file on a computer. The user was offered
to extract tweets stored in database by using keyword and
usernames. The application returns queried tweets into text
area. Deleting tweets is available by adding keyword.
Once keyword is sent to the system, it removes tweets
from database and displays them in the text area in order
to show what tweets have been deleted. The last function
is the whole database as one csv file. The path for saving
csv file is set by default and can be changed any time
when the user wants.

REFERENCES

[1] https://en.wikipedia.org/ , 2015
[2] Z. Xu, R. Lu., L. Xiang and Q. Yang, "Discovering

User Interest on Twitter with a Modified Author-Topic
Model," IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology,
pp. 422-429, 2011.

[3] X. Wang, L. Tokarchuk, F. Cuadrado and S. Poslad, "
Exploiting Hashtags for Adaptive Microblog
Crawling," IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp.
311-315, 2013.

[4] Y. Kim and K. Shim, "TWITOBI: A Recommendation
System for Twitter Using Probabilistic Modeling,"
11th IEEE International Conference on Data Mining,
pp. 340-349, 2011.

[5] M. Yang and H. Rim, "Identifying interesting Twitter
contents using topical analysis," Expert Systems with
Applications, Vol. 41, pp. 4330-4336, 2014.

[6] M. Yigit, B. Bilgin and A. Karahoca, "Extended
topology based recommendation system for
unidirectional social networks," Expert Systems with
Applications, Vol. 42, pp. 3653-3661, 2015.

[7] S. Saif, Y. He, Z. Fernandez and H. Alani, " Contextual
semantics for sentiment analysis of Twitter,"
Information Processing and Management, 2015.

Journal of Multimedia and Information System VOL. 2, NO. 3, September 2015(pp. 287-294): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.3.287

293

[8] L. Cagliero, T. Cerquitelli, P. Garza and Grimaudo, "
Twitter data analysis by means of Strong Flipping
Generalized Itemsets," Journal of Systems and
Software, Vol. 94, pp. 16-29, 2014.

[9] https://dev.twitter.com/rest/public/rate-limits, 2015

Authors

Saydiolim Ganiev
Saydiolim Ganiev received his B.S.
degree in Computer Science from
Tashkent University of Information
Technology, Tashkent, Uzbekistan, in
2011. He is currently a M.S. degree
student of the Dept. of Computer
Engineering in Dongguk University.

His research interests include Database Management
Systems(DBMS), Intrusion Detection Systems (IDS) and
machine learning techniques.

Aziz Nasridinov

Aziz Nasridinov received his
B.S. degree in Computer
Science from Tashkent
University of Information
Technology, and his M.S. and
Ph.D. degrees in Computer
Engineering from Dongguk

University, South Korea. His research interests
include Database Management Systems (DBMS),
machine-learning techniques and Web Services.

Jeong-Yong Byun
Jeong-Yong Byun received the B.S.
and M.S. degrees from Dongguk
University, Seoul, Korea in 1980 and
1983, respectively, and the Ph.D.
degree from Hongik University, Seoul,
in 1994, all in computer science. From
1982 to 1987, he was with Electronic

and Telecommunication Research Institute (ETRI),
Daejon, Korea where he was involved in the development
of UNIX systems. Since 1988, he has been with faculty of
computer science and multimedia engineering of Dongguk
University at Gyeonju. He had been visiting academy (by
Post Doctor program of KOSEF) at University of York in
England between 1995 and 1996. His researches have
been concentrated on Korean alphabet according to
Hunminjeongeum, Database Management Systems
(DBMS) and Web Services.

Twitter Crawling System

294

This is blank Page

