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Abstract: The classical HMM is defined by a parameter triple  

= (, A, B), where each parameter represents a collection of 

probability distributions: initial state, state transition and output 

distributions in order. This paper proposes a new stationary 

parameter 𝑒 = (𝑒1, 𝑒2, … , 𝑒𝑁) where N is the number of states 

and 𝑒𝑡 = 𝑃(|𝑥𝑡 = 𝑖, 𝑦) for describing how an input pattern y 

ends in state 𝑥𝑡 = 𝑖 at time t followed by nothing. It is often 

said that all is well that ends well. We argue here that all should 

end well. The paper sets the framework for the theory and 

presents an efficient inference and training algorithms based on 

dynamic programming and expectation-maximization. The 

proposed model is applicable to analyzing any sequential data 

with two or more finite segmental patterns are concatenated, 

each forming a context to its neighbors. Experiments on online 

Hangul handwriting characters have proven the effect of the 

proposed augmentation in terms of highly intuitive segmentation 

as well as recognition performance and 13.2% error rate 

reduction. 
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I. INTRODUCTION  

  Hidden Markov Model or HMM is a stochastic 

modeling tool for sequential signals [1]. Real world 

signals are constantly being generated and streaming in for 

us to capture and make sense of. There are no explicit 

starting points and there are no explicit end points as well. 

For modeling convenience, however, we assume they start 

at a certain point in time and space. Similarly they are 

assumed to end their manifestations in due time 

completing one pattern. This is particularly true when we 

consider segmental patterns that occur in sequential 

context; one is followed by another as well as it is 

preceded by still another, which will be called the context 

for the target pattern. Then there is a problem of boundary 

detection for practical analysis of sequential patterns in 

context. 

The study on improving the HMM has been around the 

two processes in the model, Markov chain and observation 

process. The majority of the study in the literature has 

been around the improving the observation. The most 

notable among the greatest inventions would be the 

continuous density modeling using Gaussian mixtures and 

semi-continuous HMM [2]. On the other hand ideas for 

improving the Markov chain have been relatively rare. 

There are a few variations of semi-Markov models in this 

category. They introduce additional parameters that 

explicitly model the state duration of the Markov chain [3]. 

This paper proposes adding a new set of HMM 

parameters augmenting the underlying Markov chain that 

control the end of Markov processes. They help the model 

terminate the random process at the right time. 

Experimental results in online Hangul handwriting 

recognition have shown highly intuitive letter boundaries 

as well as higher recognition performance, upward of 90%. 

 The rest of the paper consists as follows: Section 2 

presents a formal definition of the model based on a 

modeling assumption. Section 3 provides the theory for 

model inference and then a set of formulae for estimating 

the model parameters using the expectation-maximization 

algorithm. Section 4 describes experimental results based 

on a network of HMMs for online handwriting recognition. 

 

II. MODELING ASSUMPTION 

 

Many real world signals are dynamic and change over 

time. But we often catch common patterns recurring often 

making them look familiar. Thus it is natural to view such 

a signal as a sequence of local noisy patterns out of finite 

set of patterns. Hence an input signal is modeled as a 

concatenation of random segmental patterns which 

themselves are highly variable. In real world signals the 

boundaries of the segments are not clear. But each pattern 

has distinctive characteristics, starts and ends giving some 
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clues to the locations of boundaries. Each segmental 

sequence concludes its characteristic pattern at a certain 

point in time. 

 = (𝜋, 𝐴, 𝐵)  where 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑁)  is the initial 

state distribution describing how a process (here, a typical 

target pattern) starts probabilistically[2] while satisfying 

the constraints 𝜋𝑖 ≥ 0 and ∑ 𝜋𝑖
𝑁
𝑖=1 = 1. A and B are state 

transition and state output distributions respectively. 

 This paper proposes a new probabilistic parameter 

𝑒𝑡 = 𝑃(|𝑥𝑡 , 𝑦) for describing how a typical pattern y ends 

in state 𝑥𝑡 = 𝑖  at time t followed by nothing. It also 

satisfies the stochastic constraints: 

 𝑒𝑖 ≥ 0  and  ∑ 𝑒𝑖
𝑁
𝑖=1 = 1.              (1) 

Alternative definition based on a different modeling 

assumption would be an exit from state i to an external 

sink. In this case the final transition in each is assigned a 

probability that satisfies ∑ 𝑎𝑖𝑗
𝑁
𝑖=1 + 𝑒𝑖 = 1. This extension 

is similar to the model with constraint in (1), but is more 

likely to lead to less discriminative model particularly 

when Viterbi algorithm that computes the most likely state 

sequence is used for classification. 

Historically Markov chains have been studied a lot with 

a view to improving the accuracy of HMM modeling [3]. 

But this feature of ending behavior has never been studied. 

This paper sets the framework for the theory and presents 

an efficient inference and a training algorithms based on 

dynamic programming and expectation-maximization. In 

order to justify the proposed model augmentation, a set of 

experiments are conducted and analyses are made. The 

proposed model is also applied to Hangul characters in 

which two or three alphabets are written sequence. 

 

III. MODEL INFERENCE 

 

Given an observation sequence 𝑂 = 𝑜1𝑜2…𝑜𝑇 , the 

likelihood of model 𝜆 is computed as follows:  
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where 𝑋 = 𝑥1𝑥2…𝑥𝑇 is a Markov chain. Note that there 

is a probability factor 𝑒𝑥𝑇 at the end of the chain of 

transitions. The latter factor explicitly concludes the 

process inside the model. 

Now let us consider a set of HMMs concatenated into a 

sequence where a model k is concatenated to a preceding 

model k-1 and a trailing model k+1. Refer to Fig. 1 where 

HMMs are connected via dummy nodes as shown in big 

circles. Dummy nodes take the role of a sink for the 

preceding HMM and the environment for the ensuing 

HMMs. Either way they do not belong to any model and 

do not generate any symbol. They are introduced just for 

computational convenience. 

 
(a) 

 
(b) 

Fig. 1. Network of HMMs. (a) General network, (b) a simplified 

linear network for ease of explanation. 

 

 Then we can compute the forward and backward 

probabilities of Baum et al.’s [1] as follows: 
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where the first factors in the right hand side are the 

standard forward and backward probabilities: )(ik
t  and 

)(ik
t . They are the well-known forward and backward 

variables introduced for efficient computation free of 

repeated calculation [2]. 

The EM algorithm for the model is based on the 

following posterior estimators with regard to the latent 

state variables: 
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where ‘$’ denotes the sink or the outside of the model. 

Following the logic of parameter transformation[2], we 

can easily derive the resulting formulae. Here only the 

formula for the new parameter will be explicitly presented: 
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where 𝑇𝑘 is the time after which a Markov chain exits the 

model k. 

 

[Theorem] The algorithm presented through Equations (3) 
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~ (7) is guaranteed to converge. 

Proof. Following the reasoning of Baum et al. and using 

Jensen’s inequality, it is straightforward to show that   

)|()|( )()1( nn OPOP    with equality when 

)()1( nn   . 

When multiple samples are used for training, the 

maximum likelihood estimate is simply given by the 

following relation: 
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IV. EXPERIMENTS AND DISCUSSION 

 

4.1. Experimental set up and Dataset 

 

On-line handwriting is often the right tool for data 

entry using a stylus on a digitizer tablet [4], [5]. The 

design of the proposed model for Hangul syllable 

handwriting has been borrowed from the earlier work 

[6]. But all the component HMMs have been 

redeveloped and all the inference algorithms have been 

modified to include the proposed augmentation. 

 

 
(a) 

 
(b) 

Fig. 2. The histogram of the letters in the training set. (a) Severe 

imbalance is apparent. Half the models lack samples. (b) Prior 

samples. There are five groups of handwriting components; C, J, 

Z and two-type of ligatures in between.  

 

The training set consists of 2886 samples for about 

260 character classes. Each character consists of two or 

three alphabets: initial consonant(C), vowel (J), and 

with or without a final consonant (Z). Notationwise, a 

character is organized as either C-J or C-J-Z. But 

handwriting often involves ligatures that link between 

strokes. Explicit modeling of them with separate 

HMMs provides us a great advantage in designing a 

model for cursive scripts. There are over 100 HMMs 

including 20 ligature types each with different context. 

See Fig. 2(b). They were trained with whole character 

samples. Although the HMMs in the network were 

designed, they were first trained together in a network 

and learned the component boundaries simultaneously. 

With a small training set, this, however, didn’t turn out 

well [7]. So the model has been primed by prior 

samples, about 10% of the training set selected at 

random from the training set. See Fig. 2(c). Their letter 

boundaries were manually added. 

 

4.2. Model Inference and Handwriting Recognition 

 

The first set of tests is about the behavior of dynamic 

programming-based inference algorithms. Fig. 3(a) 

shows the Viterbi pass probabilities for the character 

‘합’(C-g, Ligature, J-k, another Ligature, and Z-q). The 

component models are aligned left-to-right (space), and 

the time sequence proceeds from top to bottom (time). 

The initial states are at the top-left corner and are 

brightest implying a high probability, where the 

intensity is rendered in the log scale. It also shows the 

most likely state sequence in knotted curves given an 

input handwriting. On the other hand Fig. 3(b) presents 

the ‘best’ posterior path for reference. It is based on the 

posterior probabilities 𝛾𝑡(𝑖) in Eq. (5) that takes both 

the left and right context into account. Note that the 

Viterbi path in Fig. 3(a), although computed using only 

the left (or past) context, is very close to and 

indistinguishable from the best one. This is often the 

case in practice, thus providing a justification for the 

use of Viterbi algorithm for path-based recognition.  

 
Fig. 3. The histogram of the characters in the training set. 

 

Handwriting recognition performance has been 
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measured over a set of 3,292 characters and recorded 

90.2% with a single best hypothesis at twenty training 

iterations. When up to five best candidates are 

considered, the figure rose to 98.7%. Refer to Table 1. 

Considering a limited number and unbalanced 

distribution of samples, the performance is deemed 

promising. But it is a bit disappointing in that the 

character samples were based on simple math-related 

texts and the number of character classes is small. In 

the current experiments, only grapheme-level bigram 

language model was used. But we expect that the 

performance will make a big jump once we employ 

character-level statistics and dictionaries. 

 

Table 1. Online Hangul handwriting recognition compared. 
Performance with a single (five best) candidates (%). 

Models 
#training iterations 

10 20 

Proposed model 
(LR*, w exit arcs) 89.25  ( 98.40) 90.22  (98.70) 

Standard model 
(LR, w/o exit arcs) 

87.85  (97.51) 88.73  (97.93) 

Standard model 
(ergodic, w/o exit arcs) 32.87  (50.89) 51.34  (66.50) 

* LR : left-right topology 

 

2.3. System Behavior 

 

Fig. 4(a) shows a score of character samples tested 

on the recognizer developed above. The small circles 

mark the component boundaries proposed by the 

system. Some cursive samples (numbered 8, 9, 11, and 

20) show two or more strokes connected into one 

making boundary detection trickier. However, all were 

correctly recognized except for the 31st sample. 

Fig. 4(b) show a selection of noteworthy samples 

returned by the recognizer based on the proposed 

HMMs. Upper row shows samples recognized correctly 

while the lower row represents failures on tough cases. 

Some are ambiguous while others imply simple 

mistakes possibly due to insufficient training. 

Nevertheless, the segmentation points look highly 

intuitive regardless of misrecognition. 

 

V. CONCLUSION 

 

  This paper presents an idea of enhancing the HMM 

behaviors in networked HMMs for modeling concatenated 

sequence of patterns with ambiguous boundaries. The 

concept of sinks as distinct from states is not new. But it is 

formally modeled in a different way rendering the HMMs 

more discriminative. Just like the initial distribution, the 

explicit modeling of exiting arcs is conceptually viable. 

Experiment has confirmed that the proposed model (1) 

enables the detection of highly intuitive pattern boundaries 

and (2) leads to a significant error reduction of 13.22%. 

 

 
(a) 

 
(b) 

Fig. 4. Recognition and segmentation examples: (a) simple cases, 

(b) difficult samples. 
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