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I. INTRODUCTION 

The operation of digital data and its transmission through 

the network are uncertain operations and are vulnerable to 

various attacks, cryptography is becoming the most 

effective means for data security. In the literature, almost 

all classical methods are still vulnerable to statistical and 

differential attacks. 

 

2.1. Conventional Hill technique 

 

 This technique, discovered by HILL [1], [2] in 1929, 

was only applicable to the text. It is based on two main steps. 

The first step is to divide the message to be encrypted into 

n character (natural number) blocks, and the second step is 

in a carefully selected ring as 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑍/26𝑍 𝑜𝑟 𝑍/256𝑍) 

The difficulty of constructing a large invertible matrix 

prompts researcher to only Use a matrix with 𝑛 ≥  4 . 

Equation 1 fully describes this standard technique  

 

      {𝐶𝑖
′ = 𝐾𝐶𝑖}  ∀ 𝑖 ≥ 1.           (1) 

 

With(𝐶𝑖)is the clear block, (𝑪𝒊
′)is the encrypted block, 

and (𝐾) is the encryption key. Each (𝑪𝒊)  block is 

translated to an element of a well selected (𝐺𝑡) ring. In 

such a case, the encryption matrix (𝐾)  is assigned 

coefficients in the same ring (𝑮𝒕) . Due to the high 

degree of linearity, this technique is always exposed to 

selected plain text and known statistical attacks. On the 

other hand, the high correlation between adjacent pixels 

and diagonal pixels of the image makes this technique 

unsuitable for image encryption. Finally, there is no 

chain in the encryption system, so this method is 

vulnerable to differential attacks. The decryption 

operation is described by next equation. 

 

    {𝐶𝑖 = 𝐾
−1𝐶𝑖

′}   ∀ 𝑖 ≥ 1.          (2) 

 

 

2.2. Hill's classic method survey  

 

Several successive developments in the methodology 

have taken place over time, but all using a reference ring 

such as (𝑮𝟐𝟓𝟔) or(𝑮𝟐𝟔) which significantly reduces the 

number of invertible matrixes and increases the risk of 

brutal attacks.   

 A first improvement [3-4-5] consists in modifying at each 

iteration; the encryption matrix by a secret permutation 
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(𝒉) and fixed in the ring (𝑮𝟐𝟓𝟔) , on the rows or on the 

columns. This improvement is given by the equation 3  

 

  {
𝐶1
′ = 𝐾1𝐶1
𝐶𝑖
′ = ℎ(𝐾𝑖−1)𝐶𝑖    ∀ 𝑖 ≥ 2,

            (3) 

where 𝒉 (𝑲𝒊−𝟏)  is the transform of the matrix 

(𝑲𝒊−𝟏)by fixed permutation (𝒉). Other improvements 

accompany the static encryption matrix of a translation 

vector(𝑻) , and this to overcome the problem of uniform 

blocks [6 − 7] and null blocks, still others modify the 

translation vector at each iteration by a linear 

transformation provided by a fixed matrix (𝑸) of size 

(𝒏, 𝒏 ), not necessarily inversible. This method is 

described by equation4. 

 

  {

𝐶1
′ = 𝐾𝐶1⨁𝑇1,
𝑇𝑖 = 𝑄𝑇𝑖−1𝑊𝑖𝑡ℎ    𝑖 ≥ 2

𝐶𝑖+1
′ = 𝐾𝐶𝑖⨁𝑇𝑖   ∀ 𝑖 ≥ 1.

,         (4) 

 

These improvements overcome statistical attacks and 

selected text attacks, but due to the lack of clear links 

between the original pixels, encrypted pixels, and 

encryption keys, they are still vulnerable to differential 

attacks. However, unless there is a strong correlation 

between the adjacent pixels of the image and the diagonal, 

all these methods are still powerless. Recently, the 

algorithm based on the classic chaotic method has exploded, 

and the chaotic suite [8 − 9] has been created to increase 

the key space, thereby protecting the method from brutal 

attacks. Unfortunately, due to the difficulty of calculating 

the inverse of higher-order matrices, these methods still use 

general non-invertible matrices with 𝑛 > 4 [10], [11], 

which poses complexity problems. So far, all encryption 

algorithms have considered the pixel values of the image in 

ring 𝑮𝟐𝟓𝟔, and the number of invertible matrices of size 

(𝑛, 𝑛) with coefficient 𝑮𝟐𝟓𝟔  is given by the following 

formula [12], [13]. 

 

2.3. Our contribution 

 

Faced with the great difficulty of inverting in large-size 

matrices, the researchers were content to handle matrices of 

sizes generally less than five, in the classic ring (𝑮𝟐𝟓𝟔) 

To correct this anomaly, our contribution provides a 

convincing solution by treating all pixel values as elements 

of one of the constructed subjects. Working in the body 

greatly increases the number of invertible matrices and 

provides protection.  To facilitate algebraic calculations, 

two chaos tables will be generated. 

 Discrete logarithmic table 

 Discrete exponential table 

Moreover, taking advantage of the properties of the 

involuntary matrices, a new technique for constructing 

invertible matrices of random size will be determined. 

 

II. THE PROPOSED METHOD 

 

This new technology that works at the pixel level is 

explained in the following aspects, and its value is regarded 

as an element of the built company. 

  
  

Fig. 1. Steps of realization of the algorithm. 

 

Finally, a detailed analysis of our methodology 

performance will be discussed and compared with other 

reference systems. 

 

Step 1: Chaotic sequences Development 

 

Our algorithm uses two of the most famous and widely 

used chaotic maps in cryptography. 

 

(1) The Logistics’ Map 

 

Due to its high sensitivity to initial conditions, chaos is 

largely utilized symmetric cryptography for the 

construction of cipher keys [14], [15], [16]. 

 

{
      u0 ∈ ]0,5  1[      ,   μ ∈ [3,75    4],

      un+1 = μun(1 − un).
        (5) 
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(2) HENON’S Map  

Henon’s chaotic two-dimensional map was first discovered 

in 1978. It is described by equation below.  

 

   {

𝑣0  , 𝑤0 𝑎 = 0.3 , 𝑏 ∈ [1.07      1.4]

𝑣𝑛+1 = 1 + 𝑤𝑛 − 𝑎𝑣𝑛
2

𝑤𝑛+1 = 𝑏𝑣𝑛

        (6) 

 

We can convert the two-dimensional map expression to a 

one-dimensional map that is easy to implement in the 

encryption system. This formula is described by next 

equation. 

 

{
𝑣0  , 𝑣1   𝑖𝑛 [0  1] 𝑎 = 0.3, 𝑏 ∈ [1.07 − 1.4]

𝑣𝑛+2 = 1 − 𝑎𝑣𝑛+1
2 + 𝑏𝑣𝑛

  (7) 

 

(3) Chaotic used vector design 

 

Our work requires the construction of three chaotic 

vectors(𝐶𝐿), (𝐾𝑅) and (𝐾𝐿) with a coefficient of(𝐺256), 

and the binary (𝐶𝑅) vector will be regarded as the control 

vector. This construct is seen by the following algorithm: 

 

𝐴𝑙𝑔2 

{
 
 
 
 
 
 

 
 
 
 
 
 

      

 
𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 3𝑛𝑚

𝐶𝐿(𝑖) =  𝑚𝑜𝑑 (𝐸 (
𝑢(𝑖) + 2𝑣(𝑖)

3
∗ 1011, 254) + 1)

𝐾𝐿(𝑖) =  𝑚𝑜𝑑 (𝐸 (
𝑤(𝑖) + 𝑢(𝑖) + 𝑣(𝑖)

3
∗ 1011, 253) + 2)

𝐾𝑅(𝑖) = 𝐸 (
𝐾𝐿(𝑖) + 𝐶𝐿(𝑖)

2
)

𝑖𝑓 𝑢(𝑖) ≥
𝑣(𝑖) + 𝑤(𝑖)

2
 𝑡ℎ𝑒𝑛

𝐶𝑅(𝑖) = 0 𝑒𝑙𝑠𝑒 𝐶𝑅(𝑖) = 1
𝑒𝑛𝑑 𝑖𝑓

     𝑁𝑒𝑥𝑡 𝑖          

 

 

We note that 

 

∀ 𝑖 ∈ ⟦1  3𝑛𝑚⟧{

𝐶𝐿(𝑖) ≉ 0
𝐾𝐿(𝑖) ≉ 0
𝐾𝑅(𝑖) ≉ 0

 

 
These elements are all non-zero; as a result, they are 

invertible within the built body. 

 

Step 2: 𝐅𝟐𝟓𝟔 Body Construction 

 

The most important step is to create an entity with 

256 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, which will replace the classical (𝐺256) in 

the calculation.  

 

(1) Mathematical overview 

For it 

 

Let      𝐹256 = {ℎ(𝑥) ∈
𝐹[𝑥]

𝑑
°ℎ ≤ 7} 

 

Let  𝒑(𝒙)  eighth-order polynomial and irreducible in 

𝑭[𝒙]. We define two internal composition laws described 

by the following formula on such a set. 

 

{
 
 

 
 

𝐹𝑖𝑟𝑠𝑡 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐿𝑎𝑤

ℎ(𝑥) ⊕ 𝑘(𝑥) = (ℎ(𝑥) + 𝑘(𝑥)) 𝑚𝑜𝑑𝑢𝑙𝑜 2,

𝑆𝑒𝑐𝑜𝑛𝑑 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐿𝑎𝑤

ℎ(𝑥) ⊗ 𝑘(𝑥) = (ℎ(𝑥)𝑘(𝑥)) 𝑚𝑜𝑑𝑢𝑙𝑜 𝒑(𝒙).

    (8) 

It is easy to prove that these two internal composition laws 

provide the (𝑭𝟐𝟓𝟔,,⊕; ⊗)with a commutative finite body 

structure with 256 elements. 

 

(2) 𝑭𝟐𝟓𝟔 Elements Representation 

 

Any element of the 𝑭𝟐𝟓𝟔 body can be represented in five 

different forms: 

 

a) Polynomial Writing 
 

We know that 

 

   𝐹256 = {ℎ(𝑥) ∈
𝐹[𝑥]

𝑑
°ℎ ≤ 7}.          (9) 

 

Consequently, any element can be written in the form of a 

polynomial of degree at most equal to 7 with (𝐺2) 

components.  For example: 

 

𝒉(𝒙) =  𝒙𝟔 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝟏 ,   𝒒(𝒙) = 𝒙𝟐 + 𝒙 

 

b) Vector Writing 

Any element of the body 𝐹256  can be represented as a 

size vector (𝟏, 𝟖) with a coefficient in (𝑮𝟐) 

 

 

c) Binary Writing 
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By simple conversion from vector writing to binary writing, 

any element of such a subject can be written in binary form  

 
 

d) Integers Writing 
All body elements are displayed in 8 bits, consequently 

their value is located between 0 and 255. So, we have  

𝑭𝟐𝟓𝟔 = {𝟎, 𝟏, 𝟐, 𝟑, … , 𝟐𝟓𝟓} 

 
This notation can be extended to the coefficient matrix in 

 𝑭𝟐𝟓𝟔. For example: 

 𝑀 = (𝑥
2 + 𝑥 + 1 𝑥
𝑥3 + 𝑥2 𝑥6 + 𝑥4 + 1

) ⟹ 𝑀 = ( 7 2
12 81

) 

 

e) Discrete Exponential Writing 

Note that, (𝑭𝟐𝟓𝟔,,⊕; ⊗) is a finite body, consequently, 

the set (𝐹256
∗  , ⨂) is a cyclic group. As a result, it is 

generated by a single element 𝑔(𝑥) closely related to the 

constructor polynomial 𝑝(𝑥). This can be illustrated by the 

following formula: 

𝐹256
∗ = {ℎ(𝑥) ∈ 𝐹[𝑥]  𝑡ℎ𝑎𝑡 𝑑 °ℎ ≤ 7 , 𝑎𝑛𝑑  ℎ(𝑥) ≠ 0}

= 𝐹256 − {0} 

 {
∀ℎ ∈ 𝐹256

∗ ∃! 𝑖 ∈ [0     254] ∶  ℎ(𝑥) = 𝑔(𝑥)𝑖  𝑚𝑜𝑑 (𝑝(𝑥)),

𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛           𝑔(𝑥)255 = 0,
 

                                          (9) 

where 𝑖 is called the exponential notation of the 

polynomial ℎ (𝑥).  

 

𝑊𝑒 𝑛𝑜𝑡𝑒  𝑡ℎ𝑎𝑡                 ;   𝐸𝑥𝑝(𝑖) = ℎ(𝑥) 
 

We confirm that the change of the generator 𝑔(𝑥) will 

lead to a fundamental change in the sign of the exponent, 

which will result in serious distortion of the entire 

encryption system. 

 

f) Discrete logarithm Writing 

Function (𝐸𝑥𝑝) is bijective, and its inverse function is the 

function defined by the following formula (𝐿𝑜𝑔):  

𝐴𝑙3   

{
 

 
𝑓𝑜𝑟  𝑖 = 0    𝑡𝑜    254

𝐿𝑜𝑔(𝐸𝑥𝑝(𝑖)) = 𝑖

𝑁𝑒𝑥𝑡    𝑖
𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛   𝐿𝑜𝑔(0) = 255

 

 

This rating will greatly facilitate algebraic calculations 

 

(3) Algebraic operations over 𝑭𝟐𝟓𝟔 

The two algebraic operations will be defined from the two 

tables constructed to facilitate the calculations.  

 

a) The multiplication 

To facilitate the multiplication of  𝑭𝟐𝟓𝟔  elements, it is 

recommended to use the two notations (𝐸𝑥𝑝) 𝑎𝑛𝑑 (𝐿𝑜𝑔). 

This technique is clarified by the equation below:

  

 𝑔(𝑥)𝑖 ⊗𝑔(𝑥)𝑗 = {

   0    𝑖𝑓   𝑖 = 255  𝑜𝑟   𝑗 = 255,
           𝑒𝑙𝑠𝑒
𝑔(𝑥)[𝑚𝑜𝑑(𝑖+𝑗,     255)].

 (10) 

 

So, we can deduce the equation below 

 

    {𝑥𝑖 ⊗𝑥𝑗 = {
0  𝑖𝑓    𝑥𝑖 = 0   𝑜𝑟   𝑥𝑗 = 0

𝐸𝑥𝑝(𝑚𝑜𝑑(𝐿𝑜𝑔(𝑥𝑖) + 𝐿𝑜𝑔(𝑥𝑗), 256))
             

                                   

                                          (11) 

 

Please note that multiplication is closely related to the 

choice of generator 𝑔(𝑥) 

 

 𝐛) 𝐅𝟐𝟓𝟔 Inverse of elements 

The calculation of the inverse of the elements of the basic 

set is very important and very useful in the decryption 

process. 

 

i. Inverse for addition 

We know that 

 

 ∀𝑥 ∈ 𝐹256     𝑥 ⊕ 𝑥 = 0.        (12) 

 

ii. Inverse for multiplication 

 

∀ 𝑥 ∈  𝐹256
∗      𝑥−1 = 𝐸𝑥𝑝(255 − 𝐿𝑜𝑔(𝑥)).       (13) 

 

Note that any non-zero element is invertible in 𝑭𝟐𝟓𝟔. 

 

(4) Matrix analysis in body 𝑭𝟐𝟓𝟔 

 

Every matrix used in this system are all in coefficients in 

𝑭𝟐𝟓𝟔  

 

a) Image of a vector by a matrix (3,3) 

The multiplication of a size matrix (3, 3)  and a size 

vector (1,3)  is determined by the following formula 

below 
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  (

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

)⊗ (

𝛼
𝛽
𝛿
) = (

𝑎 ⊗ 𝛼 ⊕ 𝑏 ⊗ 𝛽 ⊕ 𝑐 ⊗ 𝛿
𝑑 ⊗ 𝛼 ⊕ 𝑒⊗ 𝛽⊕ 𝑓 ⊗ 𝛿

𝑔⊗ 𝛼⊕ ℎ⊗ 𝛽⊕ 𝑖 ⊗ 𝛿
) 

   (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

)⊗ (
𝛼
𝛽
𝛿
) 

  =        (

𝑎 ⊗ 𝛼⊕ 𝑏⊗ 𝛽⊕ 𝑐 ⊗ 𝛿
𝑑 ⊗ 𝛼⊕ 𝑒⊗ 𝛽⊕ 𝑓⊗ 𝛿
𝑔⊗ 𝛼⊕ ℎ⊗ 𝛽⊕ 𝑖 ⊗ 𝛿

).     (14) 

 

b) Second order determinant  

The determinant of a second order matrix is defined by the 

equation below. 

  

 | 
𝑎 𝑏
𝑐 𝑑

| = 𝑎 ⊗ 𝑑⊕ 𝑐 ⊗ 𝑏,          (15) 

So 𝑇ℎ𝑒 𝑚𝑎𝑡𝑖𝑥 𝐴 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑙, 𝑙) 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 ⟺ 

𝑑𝑒𝑡(𝐴) ≉ 0. 

 

This greatly increases the number of invertible matrices. 

We know that the number of invertible size matrix (𝑝, 𝑝) 

in    𝑭𝟐𝟓𝟔 is:  

 

𝛿 = ∏ (2𝑝 − 2𝑖) ≫
𝑝−1
𝑖=1 2100.       (16) 

 

This proves that the brutal attacks on the matrices in 𝑭𝟐𝟓𝟔 

of higher order are remote. 

 

III. INSTALL THE NEW CRYPTOSYSTEM 

 

Throughout the document, the pixel intensity values of the 

color image pixels will be considered as elements of  

𝑭𝟐𝟓𝟔 . Our method is articulated on the following points. 

 

(1) Original image Vectorization 

 

After extraction of the three color channels (𝑅𝐺𝐵) and 

their conversion into vectors ( 𝑉𝑟), (𝑉𝑔), (𝑉𝑏),  a 

cohabitation is carried to form the vector 

𝑿(𝒙𝟏, 𝒙𝟐, …… . . , 𝒙𝟑𝒏𝒎). To apply Hill's new method, the 

vector (𝑋) must be cut into blocks of the size of (𝒓𝒉)  

calculated from the chaotic map and the original image size. 

 

(2) (𝐫𝐡) 𝐯𝐚𝐥𝐮𝐞 Determination   

 

𝒓𝒉 = (𝑚𝑜𝑑 (𝐸 (1010 (
1

𝑛𝑚
∑

𝑢(𝑖)+sup(𝑤(𝑖),𝑣(𝑖))

2

𝑛𝑚
𝑖=2 )) , 6) +

15).                               (17) 

 

So, we can conduct as: 

 

 15 ≤ 𝒓𝒉 ≤ 20.              (18) 

 

(3) Size vector image Adaptation 

 

In order to implement the new technology, we need to cut 

the image vector (𝑋) into large and small blocks (2𝒓𝒉). 

This operation follows the following formula: 

 

 {

let    3𝑛𝑚 ≡ 𝑠  [2𝒓𝒉]

𝑙 = 3𝑛𝑚 − 𝑠

𝑡 =
𝑙

2𝒓𝒉

,                   (19) 

 

The vector (𝑋)  must be imputed by (𝑠)  pixels by the 

following method: 

 

𝐴𝑙𝐺8   {
𝑓𝑜𝑟   𝑖 = 1  𝑡𝑜  𝑙

𝑋𝑇(𝑖) = 𝑋(𝑖)
𝑁𝑒𝑥𝑡 𝑖

 

 

   𝐼𝑓 𝑠 ≠ 0, 𝑡ℎ𝑒𝑛     

{
 
 
 
 

 
 
 
 
𝐴𝑚𝑝𝑢𝑡𝑎𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑓𝑜𝑟 𝑖 = 1  𝑡𝑜  𝑠

𝑖𝑓 𝐶𝑅(𝑖 + 𝑙) = 0 𝑡ℎ𝑒𝑛

𝑋𝐷(𝑖) = 𝑋(𝑖 + 𝑙)⨁𝐶𝐿(𝑖 + 𝑙)
𝑒𝑙𝑠𝑒

𝑋𝐷(𝑖) = 𝑋(𝑖 + 𝑙)⨁𝐾𝐿(𝑖 + 𝑙)
𝑒𝑛𝑑 𝑖𝑓
𝑁𝑒𝑥𝑡  𝑖
𝑒𝑛𝑑 𝑖𝑓

.  (20) 

          

We noticed that this decomposition is completely 

controlled by the decision vector (𝐶𝑅) 

 

(4) (𝟐𝐫𝐡)-Bit Blocks Decomposition 

 

In parallel, convert two chaotic vectors (𝐾𝑅) and (𝐾𝐿) 

into matrices (𝑀𝑅) and (𝑀𝐿) of size (𝑡, 𝟐𝒓𝒉) following 

Fig. 2. After adjusting the size of the image vector, convert 

the latter to a matrix (𝑀𝐶) of size (𝑡, 𝟐𝒓𝒉) as shown in 

Fig. 3. 

 

 
 

Fig. 2. Converting two chaotic vectors. 
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Fig. 3. Image vector decomposition. 

 

 (5) Initialization Vector Design   

 

First, the(𝑉𝐼) initialization vector of size (1, 𝟐𝒓𝒉) must 

be recalculated to change the value of the starting block. 

Ultimately, the (𝑽𝑰)  value is provided by the next 

algorithm 

 

𝐴𝑙𝑔9   

{
 
 

 
 

      

 
𝑓𝑜𝑟  𝑖 = 2 𝑡𝑜 𝑡

𝑉𝐼(𝑖) = 0
𝑓𝑜𝑟 𝑗 = 2 𝑡𝑜 𝟐𝒓𝒉

𝑉𝐼(𝑖) = 𝑉𝐼(𝑖)⨁  𝑀𝐶(𝑖, 𝑗)
     𝑁𝑒𝑥𝑡 𝑗, 𝑖          

 

 

To surpass the uniform image problem (𝐵𝑙𝑎𝑐𝑘,𝑊ℎ𝑖𝑡𝑒 . . . ) 

the setup value (𝑉𝐼) will be combined with the chaotic 

vector (𝑇𝑇) specified by the following algorithm. 

 

𝐴𝑙𝑔10{      

 
𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝟐𝒓𝒉

𝑉𝐼(𝑖) = 𝑉𝐼(𝑖)⨁  𝐶𝐿(𝑖)
     𝑁𝑒𝑥𝑡 𝑖          

 

 

The value calculated from the clear image and the chaotic 

map, will only be used to change the value of the start pixel 

and restart the encryption process. 

 

𝐴𝑙𝑔11 {      

 
𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝟐𝒓𝒉

𝐶𝑀(1, 𝑖) = 𝐶𝑀(1, 𝑖)⨁𝑉𝐼(𝑖)  
     𝑁𝑒𝑥𝑡 𝑖          

 

 

Ⅳ. NEW IMPROVEMENT CLASSICAL 

HILL TECHNIQUE 

 

The difficulty of reversing large matrices forces 

researchers to use matrices with sizes generally less than 5. 

However, due to linearity, classical HILL methods are still 

subject to statistical attacks. Our algorithm overcomes this 

anomaly by constructing an arbitrarily large invertible 

matrix, accompanied by chaotic vectors generated from the 

chaotic map used under binary chaotic vector control. 

 

4.1. Encryption matrix construction 

 

According to our technical steps, it will be easier to 

construct a large invertible matrix based on involute blocks 

and non-empty eigenvalue matrices 

 

4.4.1 Involutive matrix 

 

A is an involutive matrix if and only if we have 

𝐴 = (
𝐴1 𝐴2
𝐴3 𝐴4

) 𝐴𝑖  𝑜𝑓 𝑠𝑖𝑧𝑒 (𝒓𝒉, 𝒓𝒉)  𝑤𝑖𝑡ℎ (𝑟)  ∈ 𝐺256
∗  

 

We got 

𝐴2 = (
𝐴1 𝐴2
𝐴3 𝐴4

) (
𝐴1 𝐴2
𝐴3 𝐴4

) 

= (
𝐴1
2⨁𝐴3𝐴2 𝐴2𝐴1⨁𝐴4𝐴2

𝐴1𝐴3⨁𝐴3𝐴4 𝐴4
2⨁𝐴2𝐴3

) = (
𝐼 0
0 𝐼

).   (21) 

 𝐼: 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥 

 

Since matrix A is involutive, we get 

 

{
 

 
 

𝐴1
2⨁𝐴2𝐴3 = 𝐼,

       𝐴2𝐴1⨁𝐴4𝐴2 = 0,
𝐴1𝐴3⨁𝐴3𝐴4 = 0,

𝐴4
2⨁𝐴2𝐴3 = 𝐼.

        (22) 

 

So, 

 {
𝐴2𝐴3 = 𝐼 − 𝐴1

2 = (𝐼⨁𝐴1)(𝐼⨁𝐴1),

𝐴2𝐴3 = 𝐼 − 𝐴4
2 = (𝐼⨁𝐴4)(𝐼⨁𝐴4).

       (23) 

Since 𝐴1 matrix is given randomly, other matrices can be 

selected by the following formula 

 

 

{
  
 

  
 

𝐴2 = 𝑘(𝐼⨁𝐴1),

𝐴3 = 𝑘
−1(𝐼⨁𝐴1),

(𝑘 ∈ 𝐹256
∗ )

𝑘−1 = 𝐸𝑥𝑝(255 −  𝐿𝑜𝑔(𝑘)),

𝐴4 = −𝐴1=𝐴1,
𝐴1 ≠ 0 𝑎𝑛𝑑 𝐴1 ≠ 𝐼.

          (24) 
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Or we can take as: 

 

 

{
 
 

 
 

𝐴2 = 𝑘(𝐼⨁𝐴1),

𝐴3 = 𝑘
−1(𝐼⨁𝐴1),

𝐴4 = −𝐴1 = 𝐴1,

𝑆𝑜  𝐴 = (
𝐴1 𝑘⨂(𝐼⨁𝐴1)

𝑘−1⨂(𝐼⨁𝐴1) 𝐴1
) .

    (25) 

 

4.1.2. D matrix building 

The eigenvalue(𝐷) matrix has the form as: 

 

𝐷 = (

𝑒1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒2𝑟ℎ

) ∀ 𝑖 ∈ ⟦1  𝑟⟧  𝑒𝑖 ∈ 𝐹256.
∗

 (26) 

 

The number of matrices (𝐷) is much higher than 

216𝑟ℎ. 

 Finally, the new Hill matrix will have the following form 

 

  H = A⨂D⨂A.           (27) 

 

 𝑋′ = ((𝐻⨂(𝑋))⨁𝑀𝐾)⨂𝑀𝑅.       (28) 

  

Ⅴ. ORIGINAL IMAGE ENCRYPTION 

 

After preparing the original image and constructing all the 

parameters, the following figure will explain the encryption 

process in detail. 

 

 
 

Fig. 4. Clear image encryption. 

 

(Π)  Spread function, used to increase the impact of 

avalanche effects and protect the system from any 

difference. It is defined by the following formula: 

 

          𝛱(𝐶𝑀(𝑖 + 1: )) = 𝑀𝐶(𝑖: )⨁𝐶𝑀(𝑖 + 1: ).     (29) 

 

Ⅵ. DECRYPTING THE ENCRYPTED 

IMAGE 

 

 Our technique is a symmetric encryption system using a 

spread function, which forces us to start the decryption 

process from the last block to the first block, and then 

recalculate the initialization vector to extract the exact 

value of the first block. The figure below illustrates the 

decryption process 

 
Fig. 5. Decryption process. 

 

A decryption function can be described as: 

 

{
  
 

  
 

𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒅 𝑯𝒊𝒍𝒍 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

𝑋′ = ((𝐻⨂(𝑋))⨁𝑀𝐾)⨂𝑀𝑅

𝑿′⨂𝐸𝑥𝑝(255 − 𝐿𝑜𝑔(𝑀𝑅) = ((𝐻⨂(𝑋))⨁𝑀𝐾)

(𝑿′⨂𝐸𝑥𝑝(255 − 𝐿𝑜𝑔(𝑀𝑅)⨁𝑀𝐾) = 𝐻⨂(𝑋)

(𝑋) = 𝐻−1((𝑿′⨂𝐸𝑥𝑝(255 − 𝐿𝑜𝑔(𝑀𝑅)⨁𝑀𝐾))

 

 

{

𝑹𝒆𝒗𝒆𝒓𝒔𝒆 𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏

𝑾𝒆 𝒉𝒂𝒗𝒆 𝑪𝑀(𝑖 + 1: ) = 𝛱(𝑀𝐶(𝑖: ))⨁𝐶𝑀(𝑖 + 1: ) 

𝑴𝑪(𝒊: ) =  𝛱−𝟏(𝑪𝑀(𝑖 + 1: ) ⨁𝐶𝑀(𝑖 + 1: ))

 

 

Ⅶ. Simulation Result 
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The polynomial p(x) = x8 + x7 + x2 + x + 1  is 

irreducible and eighth order on 𝐹 [𝑥], so it is a candidate 

for this study in the construction of the simulation body 

𝑭𝟐𝟓𝟔. In addition, the polynomial 𝑔(𝑥) = 𝑥 is a generator 

of such agents. Under these conditions, the (𝑻𝑺)   

dispersion index table is shown below. 

 

Table 1. Discrete exponential table. 

 

Example: 

𝑇𝑆(10,3) = 𝐸𝑥𝑝(163) = 253. 

 So        

𝐿𝑜𝑔(253) = 163 

By applying inverse permutation, a table of discrete 

logarithms can be derived from a table of discrete 

exponents. The two tables are used mutually in the field 

(𝐹256). 

 

152−1 =  𝐸𝑥𝑝 (255 − 𝐿𝑜𝑔 (152)) = 

  𝐸𝑥𝑝 (255 − 80)  = 𝐸𝑥𝑝(174) = 179. 

 

So 

{

183⊗ 250 =
𝐸𝑥𝑝(𝑚𝑜𝑑(𝐿 𝑜𝑔(152) + 𝐿 𝑜𝑔(250) , 255))

              = 𝐸𝑥𝑝(80 + 163) = 𝐸𝑥𝑝(243) = 31
 

 

In matrix notation, 

 

𝑀 = (𝑥
2 + 𝑥 + 1 𝑥
𝑥3 + 𝑥2 𝑥6 + 𝑥4 + 1

) ⟹ 𝑀

= (
7 2
12 81

). 

 

So 

 

𝐸𝑥𝑝(𝑀) = (
123 4
211 183

), 

𝑎𝑛𝑑  

 𝐿𝑜𝑔(𝑀) = (
106 1
101 251

). 

 

Ⅷ. INVESTIGATION OF CRYPTO 

SYSTEM PERFORMANCE 

 

In this section, all the experiments were performed on a 

large color image database and using a 𝑐𝑜𝑟𝑒 𝑖7 personal 

computer, 16𝐺𝑏  memory, 500 𝐺𝑏  hard disk under the 

𝑚𝑎𝑡𝑙𝑎𝑏 software running under 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 7. Some of the 

most used reference images in cryptography and tested by 

our approach. 

 

Table 2. Images encrypted by our approach. 

 

1) Key-space analysis 

 

In our example simulation we took as encryption key 

 

𝑢0 = 0,7655412001 , 𝜇 = 3.89231541, 

                     for logistic map, 

 𝑣0 = 0.865421331, 𝑣1 = 0,563215,𝑏 = 1,3561    

for Henon map 

 

𝑻𝒉𝒆 𝒈𝒍𝒐𝒃𝒂𝒍 𝑲𝒆𝒚 𝒔𝒑𝒂𝒄𝒆 ≈ 𝟐𝟏𝟖𝟎 ≫ 𝟐𝟏𝟎𝟎. 
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2) Secret key’s sensitivity Analysis 

 

The high sensitivity of the encryption keys used in our 

system indicates that a very slight degradation of the 

encryption key automatically leads to an image that is so 

different from the original image. This confirmation can be 

viewed below the scheme in the next figure: 

Fig. 6. Secret key’s sensitivity. 

We note that a 10−15  change in a single encryption 

parameter of this technology is incapable of restoring the 

clear image by the same decryption process. 

 

2) Strength analysis of the new generation 

 

Our design has given a new opportunity to survive and to 

partner with the strongest members in the hope of 

rebuilding a new population more adapted to intruder 

aggression. To do that, we randomly selected an image and 

studied the strength of the original populations and the new 

generation, with the following results: 

 

3) Statistics attack security 

 

a) Histogram analysis 

The histogram gives the distribution of the pixel intensity 

level of any original image passed under our algorithm, 

showing the concentration near certain intensity values and 

sometimes the maximum value, while the histograms of all 

encrypted images are uniformly distributed Yes, this 

eliminates any statistical histogram attacks. 

 

b) Entropy Analysis 

Entropy information is very important in measuring the 

randomness of the encrypted image. It is defined by the 

following equation: (𝑀𝐶) image of size (𝑛,𝑚),  we 

pose(𝑡 = 𝑛𝑚), so 

 

𝐻(𝑀𝐶) =
1

𝑡
∑ −𝑝(𝑖) 𝑙𝑜𝑔2(𝑝(𝑖)),
𝑡
𝑖=1     (29) 

 

where 𝑝(𝑖) is the probability of occurrence of level (𝑖) in 

the image of the selected database. If 𝐻(𝑀𝐶) is close to 

the value 8 ( 8 − 𝑏𝑖𝑡 𝑐𝑜𝑑𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 ), the completely 

random aspect of the encrypted image is ensured. The 

following table illustrates the entropy of some reference 

images tested by our method: 

 

Table 3. Encrypted image histogram. 

 

Table 4. Entropy of some tested images. 
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c) Correlation analysis 

The correlation is given by: 

𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)

√𝑉(𝑥)√𝑉(𝑦)
.          (30) 

 

The following table illustrates the entropy of some 

reference images tested by our method: 

Table 5. Correlation of some tested images. 

 
 

5) Differential analysis 

 

Let be two encrypted images, whose corresponding free-

to-air images differ by only one bit, from (𝑪𝟏)and(𝑪𝟐), 

respectively. The expressions of these two statistical 

constants (𝑁𝑃𝐶𝑅)𝑎𝑛𝑑 (𝑈𝐴𝐶𝐼) are given by equations 

below 

 

        𝑁𝑃𝐶𝑅 = (
1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)𝑛𝑚
𝑖,𝑗=1 ) ∗ 100,     (31) 

  with     𝐷(𝑖, 𝑗) = {
1    𝑖𝑓      𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗),

0    𝑖𝑓       𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
. 

 

The 𝑈𝐴𝐶𝐼 mathematical analysis  

 

𝑈𝐴𝐶𝐼 = (
1

𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100. 

                                      (32) 

 

a) Signal-To-Peak Noise Ratio (PSNR) 

i. MSE 

Mean Square Error (MSE): This is the cumulative square 

deviation between the original image and other noisy 

images. When the MSE level decreases, the error also 

decreases. This constant measure the distance between the 

pixels of the clear image and the encrypted image. 

Calculated by the next equation. 

 

𝑀𝑆𝐸 = ∑ (𝑃(𝑖, 𝑗) − 𝐶(𝑖, 𝑗)2𝑖,𝑗 ,       (33) 

 

where (𝑃(𝑖, 𝑗)): pixel of the clear image and 

(𝐶(𝑖, 𝑗)): pixel of the cypher image. 

 

ii. PSNR 

Since many signals have a large dynamic range, PSNR is 

usually expressed on a logarithmic decibel scale. The next 

equation gives the PSNR mathematical analysis of the 

image: 

 

  𝑃𝑆𝑁𝑅 = 20𝐿𝑜𝑔10 (
𝐼𝑚𝑎𝑥

√𝑀𝑆𝐸
).         (34) 

 

Table 6. Differential parameters. 

 

b) Avalanche effect 

Our algorithm uses a strong link between encrypted 

pixels and pixels with clear policies. As a result, as data 

propagates through the structure of the algorithm, gradual 

changes become increasingly important. The avalanche 

effect is the number of bits that have been changed if a 

single bit in the original image is changed. The 

mathematical expression of this avalanche effect is given 

by 
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                       𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖
) ∗ 100.        (35) 

Table 7. Avalanche effect. 

c) Performance time 

In our technique, the encryption and decryption times are 

very similar and vary in the interval [0.05, 0.1].  

 

Table 8. Performance time. 

 

d) Speed analysis 

To approve and document the quality of our 

methodology in a timely fashion. And finally, thanks to 

these properties, we have selected the "Lena" grayscale 

image with three different sizes (256 × 256)  (512 ×

512) and (1024 × 1024). The results are presented in 

Table 9. 

 

Table 9. Execution time (in second). 

 
 

We compared the results with two classic algorithms, 

AES and DES, and can determine that the execution time 

is reasonable. The test was conducted on other images of 

different sizes, and we obtained an acceptable score. 

This is due to the low algorithm complexity of the 

algorithm implemented in our strategy. 

 

Ⅸ. MATH SECURITY 

Our algorithm uses a large symmetric key that is 

extremely sensitive to initial conditions and control 

parameters. This ensures that small interference in the key 

will regenerate a new subject and a new calculation table. 

In addition, the complexity of using discrete logarithms in 

calculations increases the difficulty of attacking our 

systems. The construction of the key matrix is closely 

linked to the chaotic maps used, which eliminates any 

brutal attacks. 

 

Ⅹ. CONCLUSION 

 

Hill's conventional system is very easy to install in the 

color image encryption system, as long as the inversion 

matrix is determined in the carefully selected ring. But due 

to linearity, this technique is still vulnerable to statistics and 

brute force attacks.  Carried on instead of the classic 

𝑍/256𝑍 ring. Similarly, the construction of a large-sized 

invertible matrix has been introduced based on the 

involution block, and the non-zero eigenvalue matrix has 

been described in detail. The large number of matrices built 

in this way ensures better protection against any brutal 

attack. Using logarithms and discrete exponents and 

translation vectors to overcome linear problems will 

increase the complexity of our method. 
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