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I. INTRODUCTION 

Chaos is a phenomenon very close to randomness, which 

occupies an important position in cryptography, but 

determinism and dynamics distinguish it from randomness. In 

the past three decades, chaos has swept through most 

sciences (mathematics, physics, biology). It is defined by a 

nonlinear equation that is very sensitive to initial conditions. 

The expansion of chaos theory is closely related to the 

development of computer science and new mathematical 

advances (modeling, simulation, etc.). Like all new theories, 

chaos theory is still the subject of many controversies. 

Various forms of disputes have caused disputes over legal 

opinions and interpretations. Will science be able to explain 

it more and more, or is it impossible to understand the world 

by accident? In fact, for scientists, this is a matter of 

defining the complexity of the phenomenon they are 

studying. Chaos as understood by scientists does not mean 

that there is no order. In fact, this is related to 

unpredictability, because the final state is very sensitive to 

the initial state, so long-term evolution cannot be predicted. 

We believe that the difference between chaos and 

randomness is the most important point for understanding 

chaos. Indeed, there is always a tendency to believe that a 

phenomenon is unpredictable due to the large number of 

parameters involved. In his description, this prompted us to 

give a probabilistic method, which by definition can satisfy 

a certain degree of freedom completely satisfactorily. 

Randomness. As far as chaos is concerned, this is actually 

not the case, and the behavior of the chaotic system seems 

to be random. But in reality, this behavior is described in a 

deterministic way by fully deterministic nonlinear equations, 

that is, in particular using mathematics that allow accurate 

and deterministic methods. To explain with a famous 

advertisement, a person can write: "Looks like an opportunity, 

tastes like an opportunity, but not accidental. With the 

passage of time, people have made several attempts to build 

a chaotic graph and realized the password. The large 

number of chaotic graphs used in learning [1] . Other 

technologies use chaotic maps to construct hash functions 

[2]. On the other hand, other technologies use chaotic cards 

in symmetric encryption systems [3]. There are also some 

the technology combines several chaotic maps to improve 

performance. Their systems [4], [ 5], [6]  were in the 

absence of any deterministic formula for generating random 

numbers, tables of such numbers appeared. 
 

𝑨𝒃𝒓𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏    

𝐼 = [0    1]

𝑓: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝐼

𝑓𝑘(𝑥) = 𝑓𝑜𝑓𝑜𝑓………𝑜𝑓(𝑥)⏟            
𝑘 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐺𝑛 =
ℤ
𝑛ℤ⁄  𝑅𝑖𝑛𝑔

 

 

Pseudo-random number generator 

Finding that they were unable to master random numbers, 

researchers quickly turned to the generation of pseudo-
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random numbers defined by mathematical relationships that 

produce the same sequence under the same conditions. 

Among all these technologies, we mentioned the most 

important ones. 

1.1. Von Neumann Generator 

In 1946 Von Neumann proposed the following pseudo-

random number generator 

1. Take an integer (𝑥0) of n digits 

2. Calculate (𝑥1 = 𝑥0
2) 

3. Take the (𝑛) middle digits 

4. Restart 

 

1.2. Linear congruence generator 

The linear congruential generator was introduced by 

Lehmer, and is still popular in today's methods for 

generating pseudorandom numbers quickly. The sequence 

of random numbers (𝑥𝑛)is created as follows: 
 

Linear congruence generator 

𝑥0 ∈
ℤ
𝑛ℤ⁄

𝑥𝑛+1 = (𝑎𝑥𝑛 + 𝑐) 𝑚𝑜𝑑 𝑛
 

(1

) 

 

In order to be able to choose a seed 𝑥0 without constraints 

between 0 𝑎𝑛𝑑 𝑛 − 1, it is necessary to try to maximize the 

generator period. However, it turns out that the values of a 

and c are known, which makes it possible to obtain a 

maximum period (𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑛) . the period of a linear 

congruential generator is maximum if and only if: 

1. 𝑖𝑓 𝑐 ≠ 0  𝑡ℎ𝑒𝑛 c is prime with n.  

     𝑁𝑎𝑚𝑒𝑙𝑦, 𝑖𝑡 𝑚𝑒𝑎𝑛𝑠 𝑃𝑔𝑐𝑑(𝑐, 𝑛)=1. 

2. For each prime number 𝑝 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑛,  

     (𝑎 − 1) 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑝. 

3. (𝑎 − 1)𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑛𝑒 

 

1.3. Selected popular chaotic maps   

Functions that generate chaotic sequences can be divided 

into two categories: one-dimensional sequences and multi-

dimensional sequences. Chaotic functions are rare in the 

literature, and there are only a dozen functions used in 

cryptography.   

 

1.4. One-dimensional chaotic map 

1.4.1 Logistic recurrence 

Logistic recursion [7] is a simple example of nonlinear 

sequence. It is defined by a simple relation managed by a 

second order polynomial described by the following 

recurrence relation. 
 

Logistic recurrence 

      u0 ∈ ]0,5  1[      ,   μ ∈ [3,75    4]

      un+1 = μun(1 − un)
 

(2) 

 

1.4.2. The Skew Tent Map 

The Skew tent map [8] will be redefined as the equation 

below 

The skew tent map 

𝑣0 ∈ ]0   1[       𝑝 ∈ ]0,5   1[

𝑣𝑛+1 = 

{
 

 
𝑣𝑛
𝑝
             𝑖𝑓  0 ≺ 𝑣𝑛 ≺ 𝑝

1 − 𝑣𝑛
1 − 𝑝

     𝑖𝑓 𝑝 ≺ 𝑣𝑛≺1         

 

 

(3)  

 

1.4.3. PWLCM Map 

It is a real linear sequence [9] by pieces defined by the 

equation below 
 

PWLCM  

  𝑤𝑛 = 𝑓(𝑤𝑛−1)

=

{
 
 

 
 

         

𝑤𝑛−1    

𝑑
              𝑖𝑓   0 ≤ 𝑤𝑛−1 ≤ 𝑑

𝑤𝑛−1 − 𝑑

0.5 − 𝑑
          𝑖𝑓 𝑑 ≤ 𝑤𝑛−1 ≤ 0.5

𝑓(1 − 𝑤𝑛−1)    𝑒𝑙𝑠𝑒

 

 

(4) 

 

The simplicity and robustness of this card encourages 

researchers to use it in cryptography. 

 

II. RECOMMENDED KNOWLEDGE 

 

Before revealing the structure of this new map, it is 

necessary to define some basic properties. Let (𝑓) be a 

continuous function over the interval( 𝐼) and defined by the 

equation. 
 

continuous function 

𝑓:    𝐼 →  𝐼
𝑥  →   𝑓(𝑥)

 
(5) 

 

We are going to give some definitions to clarify all the 

points of the article. 

 

2.1. Trajectory 

Let (𝑥) be an element of ( 𝐼), we call the trajectory of x 

the set of iterates of (𝑥) by the function (𝑓). This set is 

defined by 
 

Trajectory 

Γ𝑥 = {𝑥, 𝑓(𝑥), 𝑓
2(𝑥), …… . . 𝑓𝑘(𝑥), … }      (6) 

 

2.2. Periodicity 

We say that 𝑥 ∈ 𝐼 is periodic if there is an integer (𝑟) 

such that 
 

Periodicity 
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∃ 𝑟 ∈ ℕ; 𝑓𝑟(𝑥) = 𝑥 (7) 

 

In that case we'll have 
 

Γ𝑥 = {𝑥, 𝑓(𝑥), 𝑓
2(𝑥), …… . . 𝑓𝑘(𝑥), … , 𝑓𝑟−1(𝑥)} (8) 

2.3. Period 

The (𝑙)  period of an element 𝑥 ∈ 𝐼  is the smallest 

integer r such that 
 

Period 

𝑙 = 𝑀𝑖𝑛⏟
𝑟∈ℕ

 𝑓𝑟(𝑥) = 𝑥 (9) 

 

We notice that if (𝑙) is the period of element (𝑥) then 

 

2.4. Transitive topology 

Let (𝑓) be a continuous function on I. We say that (𝑓) 

is topologically transitive if: 
 

Transitive topology 

∀(𝑈, 𝑉)𝑂𝑢𝑣𝑒𝑟𝑡𝑠 ⊂ 𝐼; ∃(𝑥, 𝑝) ∈ 𝑈𝑥ℕ /𝑓𝑝(𝑥)  

∈ 𝑉 

(10) 

 

2.5. Density 

It is said that ( 𝑓) is dense in (𝐼 ) if: 
 

Density 

∀(𝑥, 𝑦)  ∈ 𝐼𝑥𝐼; ∃(𝛼, 𝑝) ∈ 𝐼𝑥ℕ /𝑓𝑝(𝛼)  ∈ [𝑥    𝑦] (11) 

 

2.6. Initial Condition Sensitivity 

It is said that ( 𝑓) is sensible to the initial conditions if 
 

Initial condition sensitivity 

∃𝜌 > 0 , ∀  𝑥 ∈ 𝐼, ∀  𝜇 > 0, ∃(𝑦, 𝑝)

∈ 𝐼𝑥ℕ {

|𝑥 − 𝑦| < 𝜇
𝑇ℎ𝑒𝑛

|𝑓𝑝(𝑥) − 𝑓𝑝(𝑦)| > 𝜌
 

 

(12) 

In other words,  

𝐹𝑜𝑟 𝜌 ∈ 𝐼 𝑎𝑛𝑑 𝜌∗ = 𝜌 + 𝜖: ∈ ~10−32  𝑡ℎ𝑒𝑛 Γ𝜌≠Γ𝜌+𝜖 

 

2.7. Fixed points nature 

2.7.1. Definition 

(𝑥) 𝑖𝑠 a fixed-point if 
 

Fixed point 

(𝑓(𝑥) = 𝑥) (13) 
 

here are two types of fixed points 
 

2.7.2. Attractive fixed point 

(𝑥) is an attractive fixed point if and only if 
 

Attractive fixed point 

∃(𝛼𝑛 = 𝑓
𝑛(𝛼0)) 𝑡ℎ𝑎𝑡 𝑙𝑖𝑚(𝛼𝑛) = 𝑥 (14) 

 

2.7.3. repulsive fixed point 

(𝑥) is a repulsive fixed point if it is not attractive. 

 

2.7.4. Property 

If function (𝑓) is derivable then 
 

Property 

|𝑓′(𝑥)| > 1 𝑡ℎ𝑒𝑛 𝑥 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡
|𝑓′(𝑥)| < 1 𝑡ℎ𝑒𝑛 𝑥 𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

|𝑓′(𝑥)| = 1 𝑡ℎ𝑒𝑛 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

 

 

(15) 

 

III. NEW CHAOTIC FUNCTION DESIGN 
 

3.1. Chaotic function 

3.1.1. Definition 

(𝑓) is a chaotic function if and only if: 

the set of periodic points is dense in (𝐼) 

1. f is transitive topologically 

2. f shows sensitivity to initial conditions 

3. Let (𝑓) be a continuous function over the interval I 

and defined by the equation 
 

Chaotic function design 

{
  
 

  
 

𝑓:    𝐼 →  𝐼
𝐿𝑒𝑡   (𝑝 > 0

 𝑓(𝑥) =

{
 

 𝑝2𝑥     𝑖𝑓   0 ≤ 𝑥 ≤
1

1 + 𝑝

𝑝 − 𝑝𝑥   𝑖𝑓  
1

1 + 𝑝
≤ 𝑥 ≤ 1

 

 

 

(16) 

 

3.2. Graphic representation of the function (𝒇) 

The function (𝑓)  defined by the equation can be 

represented by the following figure 
 

 
Fig. 1. Basic function graph. 

 

3.3. Existence domain of function f 

For the sequence (𝑥𝑛)  to exist it is necessary that 

𝑓(𝐼) ⊂ 𝐼. So, it is necessary that 

Existence domain 
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{
 

 
𝑝2

1 + 𝑝
< 1

𝑆𝑜
𝑝2 − 𝑝 − 1 < 0

 

 

(17) 

Let's put 𝜑 =
1+√5

2
 

(𝐺𝑜𝑙𝑑 − 𝑁𝑢𝑚𝑏𝑒𝑟) 

 𝑆𝑜      𝑝 ∈ [0    𝜑 ] 

 

3.4. Derived from f 

The function (𝑓)  is continuously derivable and its 

derivative is given by the expression 
 

Derived from f 

  

{
 

 𝑓′(𝑥) = 𝑝2   𝑖𝑓   0 ≤ 𝑥 ≤
1

1 + 𝑝

𝑓′(𝑥) = −𝑝   𝑖𝑓  
1

1 + 𝑝
≤ 𝑥 ≤ 1  

 

 

(18) 

 

3.5. (𝒇) fixed points 

The two stationary po 
 

(𝒇)𝒇𝒊𝒙𝒆𝒅 𝒑𝒐𝒊𝒏𝒕 

{
𝛼 = 0

𝛽 =
𝑝

1 + 𝑝
 

(19) 

 

3.5.1. Fixed points nature 

We have 

Fixed point nature 

{
 
 

 
 

|𝑓′(𝛼)| = 𝑝2   

|𝑓′(𝛽)| =

{
 

 𝑝2      𝑖𝑓   0 ≤ 𝛽 ≤
1

1 + 𝑝
 

𝑝       𝑖𝑓  
1

1 + 𝑝
≤ 𝛽 ≤ 1 

     
 

 

 

(20) 

So 

{
𝑖𝑓 𝑝 < 1 𝑡ℎ𝑒𝑛 𝛼 𝑖𝑠 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡
𝑖𝑓 𝑝 > 1 𝑡ℎ𝑒𝑛 𝛼 𝑖𝑠 𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

 

 

Therefore, Preliminary positioning of control parameters 

(𝑝) 

𝑝 ∈ [1   𝜑] (21) 

 

3.6. Chaotic sequence building 

The sequence (𝑥𝑛) is defined by the following expression 
 

Chaotic sequence building 

{
 
 

 
 

𝑥0 ∈ [0    1]     𝑝 ∈ [1   𝜑]

 𝑓(𝑥𝑛) = 𝑥𝑛+1

{
 

 𝑝2𝑥𝑛     𝑖𝑓   0 ≤ 𝑥𝑛 ≤
1

1 + 𝑝

𝑝 − 𝑝𝑥𝑛    𝑖𝑓  
1

1 + 𝑝
≤ 𝑥𝑛 ≤ 1

 

 

 

(22) 

 

3.7. Initial Condition Sensitivities 

To measure the sensitivity to the initial conditions of the 

sequence (𝑥𝑛)  defined by function (𝑓)  , we have to 

calculate the Lyapunov exponent 
 

Lyapunov exponent 

𝜆 = lim
𝑛→∞

(
1

𝑛
)∑𝐿𝑜𝑔2|𝑓

′(𝑥𝑘)|

𝑛

𝑘=0

 
(23) 

In our case, we notice that 

 

𝜆 ≫ lim
𝑛→∞

(
1

𝑛
)∑𝐿𝑜𝑔2|𝑓

′(𝑥𝑘)|

𝑛

𝑘=0

= lim
𝑛→∞

(
1

𝑛
)∑

3

2
𝐿𝑜𝑔2(𝑝

𝑛

𝑘=0

)

≈
3

2
𝐿𝑜𝑔2(𝑝) > 0 

(24) 

 

 

We can conclude from the value of the Lyapunov 

exponent that the sequence (𝑥𝑛)  defined by the function 

(𝑓) is sensitive to the initial conditions. This value is higher 

than the value of the logistics diagram, indicating that it is 

highly sensitive to initial conditions and control parameters. 

 

 
Fig. 2. Lyapunov exponent variation with p. 

 

The logarithmic scale plot shows that the distance 

between two very close initial conditions varies according 

to an exponential law. 

 

3.8. Sarkovskii's Theorem 

Order of Sarkovkii 
 

Sarkovskii's Theorem 

{
  
 

  
 

3 ≻ 5 ≻ 7 ≻ 9 ≻ 11 ≻ ⋯⋯
3 ∗ 2 ≻ 5 ∗ 2 ≻ 7 ∗ 2 ≻ 9 ∗ 2 ≻ ⋯⋯
3 ∗ 22 ≻ 5 ∗ 22 ≻ 7 ∗ 22 ≻ 9 ∗ 22 ≻ ⋯

⋮
⋮

3 ∗ 2𝑛 ≻ 5 ∗ 2𝑛 ≻ 7 ∗ 2𝑛 ≻ 9 ∗ 2𝑛 ≻ ⋯
⋮

 

 

 

 

(25) 

All-natural integers are represented in this Sarkovkii 

order. 

The first line represents odd numbers 
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The row line (𝑛) represents the numbers 2𝑛−1(2𝑘 + 1) 
 

3.8.1. Theorem 

Let 𝑓: 𝐼 →  𝐼 continue. Suppose that (𝑓 ) has a periodic 

point of period ( 𝑘). If (𝑘 ≻   ℓ) according to Sarkovskii's 

order, then f also has a periodic point of period (ℓ). 

3.8.2. Corollary (Lie & York) 

If (𝑓) admits an item from period 3, then it admits an 

item of any order. As a result, the function has a chaotic 

appearance. 

Search for 

 

3.8.3. period point 3 

Let 
 

Period point 3 

𝐿𝑒𝑡 𝑥∗ =
𝑝

1 + 𝑝5
∈ 𝐼 (26) 

 

Let's demonstrate that (𝑥∗) is a point of period 3 

Let's prove that  
 

𝑝

1 + 𝑝5
<

1

1 + 𝑝
⟹ 𝑝5 − 𝑝2 − 𝑝 + 1

> 0      𝑓𝑜𝑟     𝑝 ∈ [1   𝜑]   

(27) 

 

Let's put 
 

𝑓(𝑝) = 𝑝5 − 𝑝2 − 𝑝 + 1 (28) 

 

Therefore 
 

{
          𝑓′(𝑝) = 5𝑝4 − 2𝑝 − 1

𝑓′′(𝑝) = 20𝑝3 − 2 𝑆𝑜  𝑓(3)(𝑝) = 60𝑝3 > 0 
 

(29) 

 

The following table gives the variations of the functions  

 

 
Fig. 3. Location of the period 3 point. 

 

So  
 

∀𝑝 ∈ [1   𝜑]   
𝑝

1 + 𝑝5
<

1

1 + 𝑝
 

 

Therefore: 

{
 
 

 
 𝑓(𝑥∗) =

𝑝3

1 + 𝑝5

𝐿𝑒𝑡′𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒   
𝑝3

1 + 𝑝5
 𝑎𝑛𝑑 

1

1 + 𝑝
 

 

 

(30) 

 

Let's look at the sign of the function (𝑓) defined by 
 

𝑓(𝑝) =  𝑝5 − 𝑝4 − 𝑝3 + 1         

(31) 

 

According to a rough calculation we have  
 

𝐹𝑜𝑟 𝑝 ∈ [1,47    𝜑]     𝑓′𝑝) > 0 

{
 
 
 

 
 
 

𝐹𝑜𝑟 𝑝 ∈ [1,47    𝜑]     𝑊𝑒 ℎ𝑎𝑣𝑒

𝑓(𝑥∗) =
𝑝3

1 + 𝑝5

𝑓(2)(𝑥∗) =
𝑝5

1 + 𝑝5
>

1

(1 + 𝑝)

𝑓(3)(𝑥∗) = 𝑝 − 𝑝
𝑝5

1 + 𝑝5
=

𝑝

1 + 𝑝5
= 𝑥∗

 

 

 

 

(32) 

 

𝑥∗ =
𝑝

1+𝑝5
  is a periodic point of period 3, therefore ( 𝑓 ) 

is a chaotic function according to Sarkovskii's corollary.  

This period point 3 is illustrated by the following figure 

 

 
Fig. 4. Period point 3. 

 

3.9. Initial sequence values 

3.9.1. Period doubling 

We know that the only fixed points are 
 

Period doubling 
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{
𝛼 = 0

        𝛽 =
𝑝

1 + 𝑝
 

(33) 

 

searches for points (𝑥0) for which there is a k such that 
 

𝑓𝑘(𝑥0) = 𝛽 

 

If there is such a point (𝑥𝑛 ) then the sequence (𝑥𝑛 ) is 

stationary. 

For (𝑘 = 1), we have  
 

{
 
 

 
 𝑓(𝑥0) = 𝛽 =

𝑝

1 + 𝑝
𝑆𝑜

𝑥0 =
1

𝑝(1 + 𝑝)

 

 

 

(34) 

 

For (𝑘 = 2), we have  
 

{
 
 

 
 𝑓

2(𝑥0) = 𝛽 =
𝑝

1 + 𝑝
𝑆𝑜

𝑥0 =
1

𝑝3(1 + 𝑝)

 

 

 

(35) 

 

By recurrence, we obtain 

For (𝑘 = 𝑛), we have 
 

{
 
 

 
 𝑓

𝑛(𝑥0) = 𝛽 =
𝑝

1 + 𝑝
𝑆𝑜

𝑥0 =
1

𝑝2𝑛−1(1 + 𝑝)

 

 

 

(36) 

 

If there is (𝑛)  such that the initial condition 𝑥0 =
1

𝑝2𝑛−1(1+𝑝)
, then the sequence would be stationary from the 

𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  onwards. Then the sequence is no longer 

chaotic. 

We construct a sequence (𝑦𝑛 ) defined by: 
 

{

𝑛 ≥ 1
𝑊𝑒 ℎ𝑎𝑣𝑒

𝑦𝑛 =
1

𝑝2𝑛−1(1 + 𝑝)
~
1

𝑝2𝑛

 

 

(37) 

 

(𝑦𝑛 )  is a decreasing sequence minus 0 , converging 

donations, and we have the following equation; 
 

 𝐹𝑜𝑟 𝑝 > 1 𝑤𝑒 ℎ𝑎𝑣𝑒  𝑙𝑖𝑚
𝑛→∞

(𝑦𝑛) = 0 (38) 

 

Finally 

{
  
 

  
 𝑥0 >

1

(1 + 𝑝)
        𝑝 ∈ [1,47       𝜑]

 𝑓(𝑥𝑛) = 𝑥𝑛+1

{
 

 𝑝2𝑥𝑛     𝑖𝑓   0 ≤ 𝑥𝑛 ≤
1

1 + 𝑝

𝑝 − 𝑝𝑥𝑛   𝑖𝑓  
1

1 + 𝑝
≤ 𝑥𝑛 ≤ 1

 

 

 

(39) 

 

This is illustrated by the following curve 

The sequence (𝑥𝑛 ) defines is a chaotic sequence under 

the specified conditions. 

We are looking for an element 𝑥0 >
1

(1+𝑝)
    such as 

 

∃ 𝑘 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑓(𝑥0) =  𝑥𝑘 =
1

𝑝2𝑘−1(1 + 𝑝)

<
1

(1 + 𝑝)
 

(40) 

 
Fig. 5. Initial value. 

 

If such a point exists then two situations present 

themselves 
 

𝑥0 >
𝑝

(1 + 𝑝)
    𝑜𝑟 𝑥0 ∈ [

1

(1 + 𝑝)
     

𝑝

(1 + 𝑝)
  ]   

(41) 

 

Situation 1 

𝑖𝑓  𝑥0 ∈ [
1

(1 + 𝑝)
     

𝑝

(1 + 𝑝)
  ]  𝑡ℎ𝑒𝑛   𝑓(𝑥0)

>
𝑝

(1 + 𝑝)
 

(42) 

 

Situation 2 

𝑖𝑓  𝑥0 >
𝑝

(1 + 𝑝)
  𝑡ℎ𝑒𝑛   𝑓(𝑥0) <

𝑝

(1 + 𝑝)
   (43) 

 

So 

{
 
 

 
 𝑝 − 𝑝𝑥0 =

1

𝑝2𝑘−1(1 + 𝑝)
𝑆𝑜

𝑥0 =
𝑝2𝑘−1(1 + 𝑝) − 1

𝑝2𝑘−1(1 + 𝑝)
<

1

(1 + 𝑝)

 

 

 

(44) 

 

In this case the sequence would be stationary from 

iteration (𝑘) 
 

𝑓𝑘(𝑥0) =
𝑝

1 + 𝑝
 (45) 

 

Moreover, we have, 
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∀ 𝑘 ∈ ℕ ∶  
𝑝2𝑘−1(1 + 𝑝) − 1

𝑝2𝑘−1(1 + 𝑝)
>

𝑝

1 + 𝑝
 

(46) 

 

Finally 

{
  
 

  
 𝑥0 ∈ [

1

(1 + 𝑝)
     

𝑝

(1 + 𝑝)
]         𝑝 ∈ [1,47       𝜑]

 𝑓(𝑥𝑛) = 𝑥𝑛+1

{
 

 𝑝2𝑥𝑛     𝑖𝑓   0 ≤ 𝑥𝑛 ≤
1

1 + 𝑝

𝑝 − 𝑝𝑥𝑛   𝑖𝑓  
1

1 + 𝑝
≤ 𝑥𝑛 ≤ 1

 

 

 

(47) 

 

This sequence is chaotic. 

3.10. Feigenbaum's Constants - Renormalization – 

In 1975 the physicist Feigenbaum noticed that the general 

pattern of the logistic sequence was repeated at each 

bifurcation to within a factor of scale. He then used a 

process of renormalization. This involves enlarging smaller 

and smaller parts of the graph and comparing these 

magnifications to the original pattern. When the enlarged 

pattern reproduces the first pattern, it is called self-

simulation. As it grows to infinity, the general structure 

repeats itself. If globally, the duplications are not the same, 

they keep the same ratios 

 

 
Fig. 6. Feigenbaum's Renormalization. 

 

The first constant intervening horizontally 
 

𝐿1
𝐿2
≈
𝐿2
𝐿3
≈ 4,57 

 

The second constant occurring vertically 
 

𝑑1
𝑑2
≈
𝑑2
𝑑3
≈ 2,5 

 

3.10.1. Universality 

The same sequence, but defined by another function (f) 

defines single hump type has the same properties 

 

 
Fig. 7. Universality. 

3.11. Some simulations 

 

{
     𝑥0 = 0,45
      𝑝 = 1,5

 

 

 

Fig. 8. Trajectory of x. 

 

The trajectory seems to be random 

 

3.11.1. Deviation 

For two very close values of the initial conditions 

attached to the same control parameter (p) we see the 

deviation of the trajectories, this is due to the strong 

sensitivity to the initial conditions provided by the value of 

the Lyapunov exponent. 

 
Fig. 9. Sensitivity. 
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We have noticed that small disturbances under initial 

conditions will greatly deviate from the trajectory. 

The sensitivity to initial conditions of a chaotic map 

measures its robustness against abrupt attacks. Our map is 

one-dimensional, a comparison with the most used maps is 

given by the following table. 

 

Table 1. Lyapunov exponent. 

Chaotic map Lyapunov exponent 

Logistic Map Ln (2) 

PWLCM Ln (2) 

Tent Map Ln (2) 

Our Map 3/2Ln(p) >> Ln(2) 

 

IV. CRYPTOGRAPHY APPLICATION 
 

We will introduce the improvement of Hill's classic 

method using the new chaotic map as the private key to 

illustrate the performance of our new chaotic map. After 

reading the original image and switching to the vector, a 

chaotic vector of the same size is generated from the new 

map (𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑤𝑒 𝑡𝑎𝑘𝑒 𝑝 =  1.54, 𝑥0  =  0.623). 

 

4.1. Our algorithm 

1. Subdivision of the image vector into blocks of three                       

pixels, as well as the chaotic vector. 

2. Calculation of the initialization vector 

3. Modification of the priming block 

4. Application of Hill's improved method. 

5. Application of dissemination 

6. Reconstruction of the encrypted image 

7. The encryption process is as follows 

 

 
Fig. 10. Encryption process. 

 

The encryption function is defined by 
 

Encryption process 

{
 
 

 
 

𝐵1 = 𝐼𝑉⨁𝐵1
Ψ(𝐵1) = 𝐵1

′ = 𝐻𝐵1⨁𝑇𝑉1
𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛𝑚
𝐵𝑖 = 𝐵𝑖−1⨁𝐵𝑖

Ψ(𝐵1) = 𝐵1
′ = 𝐻𝐵1⨁𝑇𝑉𝑖

𝑁𝑒𝑥𝑡 𝑖

 

 

 

Alg 1 

 

The use of vector (𝑇𝑣𝑖) aims to overcome the linearity 

problem of classical systems. 

Construct the encryption key matrix from the new 

chaotic map by the following expression. 

 

𝐻 = (
𝑎 𝑏 𝑐
0 𝑑 𝑒
0 0 𝑞

)  

𝑊𝑖𝑡ℎ  𝑎, 𝑑, 𝑞 𝜖(ℤ 256ℤ⁄ )
∗
𝑎𝑛𝑑 𝑏, 𝑐, 𝑒 ℤ 256ℤ⁄  

 

After the simulation is complete, we get 

 

Table 2. Encrypted image histogram. 

 

 

All images tested by our algorithm generate encrypted 

images with uniform and flattened histograms of pixel 

distribution. These histograms give an entropy value very 

close to the maximum value (8).  This ensures a strong 

protection of our new technology against any entropy attack. 

The calculation of the entropy value is given by the table 

below 
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Table 3. Calculated entropy. 

 
The use of the encryption mode provides strong protection 

for our system against differential attacks. The table below 

illustrates the different values of the differential statistical 

constants. 

 

Table 4. Differential parameters. 

 
 

4.1.1. Avalanche effect 

Our algorithm uses a strong link between encrypted 

pixels and pixels with clear policies. As a result, as data 

propagates through the structure of the algorithm, gradual 

changes become increasingly important. The avalanche 

effect is the number of bits that have been changed if a 

single bit in the original image is changed. The mathematical 

expression of this avalanche effect is given by 

 
 

  𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖
) ∗ 100.                (48) 

 

Table 5. Avalanche effect. 

 
 

The high sensitivity of our new chaotic map makes our 

algorithm immune to brute force attacks. This sensitivity is 

illustrated by the following figure 

 

 
Fig. 11. Key sensitivity. 

 

A rapid comparison between our example using a chaotic 

map with an enhanced Vigenere and other techniques. This 

minimal comparison, illustrated in the following table, 

highlights the complexity of our system, devoted by the 

new chaotic map. 
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Table 6. Comparison of our scheme with other methods. 

 

 

V. CONCLUSION 
 

Faced with various difficulties in constructing random 

numbers, researchers are committed to using generators 

that follow simple mathematical formulas to create pseudo-

random numbers. With the passage of time, chaos theory 

suddenly appeared, and due to the need to use passwords 

with such numbers to create private encryption attack. 

Using logarithms and discrete exponents and translation 

vectors to overcome linear problems will increase the 

complexity of our method. 
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