
Journal of Multimedia Information System VOL. 9, NO. 2, June 2022 (pp. 93-102): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.2.93

93

I. INTRODUCTION

Dependency parsing is to find a governor of each word
and its dependency relation between the governor and the
dependent. The parser analyzes the syntactic structure of a
sentence by predicting the dependency relation between the
words in a sentence [1-2]. The dependency relation in a sen-
tence helps understand the meaning of the sentence. Thus,
dependency parsing plays an important role in natural lan-
guage processing. Recently, the deep learning model has
made remarkable improvements in signal processing, com-
puter vision, and natural language processing. In the deep
learning model for natural language processing tasks,
words and sentences are represented in a continuous vector
space to be used as input features [3-10]. However, proper
nouns in the input sentence make it difficult to represent a
proper noun in the continuous vector space [11-12].

Dependency parsing techniques are categorized into cas-
caded chunking, graph-based, and transition-based ap-
proaches. When comparing the time complexity of each
technique, the cascaded chunking and graph-based ap-
proach have the time complexity of O(n2) and O(n3) respec-
tively, The time complexity of transition-based parsing,
however, is O(n), namely the transition-based approach is

more effective in the time complexity than other methods
[13-17]. Transition-based dependency parsing predicts a
correct transition based on features extracted from the con-
figuration, which consists of a stack, a buffer, and a set of
dependency arc, and updates the configuration by taking ac-
tions according to the features extracted from the configu-
ration. When the state of configuration reaches a terminal
condition, the dependency parsing tree is completed ac-
cording to the dependency relation and the relation type,
where the deep learning model is used to determine the ac-
tions from features extracted from the configuration [18-
20].

In early studies of dependency parsing with deep learn-
ing model, the features extracted from the configuration are
trained by feed-forward neural network. The features con-
sist of only the upper components of the stack and the
buffer. Therefore, this neural network has the disadvantage
that it can learn only from the features extracted from lim-
ited components. Lee et al. (2014) used NNLM (Neural
Network Language Model) and word2vec to embed Korean
morphemes, and it is trained by using feed-forward neural
network with ReLU function and dropout method [21]. The
studies based on recurrent neural network are conducted to
utilize components in the configuration with LSTM cell to

Proper Noun Embedding Model for the Korean Dependency Parsing

Gyu-Hyeon Nam1, Hyun-Young Lee2, Seung-Shik Kang3*

Abstract

Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used
for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for
the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous
vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding
unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contex-
tual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for
proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and
morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than
the same arc-eager approach-based Malt parser.

Key Words: Dependency Parsing, LSTM, Proper Noun Embedding, Malt Parser, Transition-Based Model.

Manuscript received March 26, 2022; Revised May 1, 2022; Accepted May 24, 2022. (ID No. JMIS-22M-03-011)
Corresponding Author (*): Seung-Shik Kang, +82-2-910-4800, sskang@kookmin.ac.kr
1DeepBrain AI, Seoul, Korea, ngh3053@deepbrainai.io
2KT Corporation, Seoul, Korea, lee.hyunyoung@kt.com
3Department of Artificial Intelligence, Kookmin University, Seoul, Korea, sskang@kookmin.ac.kr

Proper Noun Embedding Model for the Korean Dependency Parsing

94

learn long dependency [22-23]. Li and Lee (2015) proposed
a recurrent neural network to solve the limited learning of
feed-forward neural networks and they used LSTM to solve
a vanishing gradient problem of recurrent neural network
[24]. Na et al. (2016) suggested a learning model with
stack-LSTM instead of learning configuration features at
once [25-26]. In addition, there are researches combining
the transition-based method and the graph-based method or
other deep learning models such as seq2seq and SyntaxNet
[27-29].

In case of the Korean sentence, a head is located on the
right side of the dependent because the sentence structure
follows a head final rule. If we parse a Korean sentence with
traditional transition-based approach in reverse order, the
direction of the relation ends up with a left-arc according to
the head final rule. In order to improve the efficiency of the
oracle, it is necessary to reduce the number of transitions.
Lim et al. (2014) investigated to achieve it by using the head
final rules in the Korean language to run the transition-
based parser in reverse order [30]. Although they improve
the efficiency of a parser, they do not resolve OOV problem
to deal with proper noun that hardly occurs in train corpus.
In this paper, we propose a Korean dependency parsing
method to represent proper noun in a continuous vector
space by replacing proper noun with a special token. We em-
ploy one of the transition-based approaches, arc-eager ap-
proach, with neural network, and the neural network-based
model was constructed by multi-layer bidirectional LSTM.

II. TRANSITION-BASED PARSING

2.1. Transition-based Dependency Parsing
Transition-based dependency parsing predicts a correct

transition between words in a sentence with features from
the configuration and then derives a target dependency
parse tree. The transition-based dependency parsing model
is implemented by arc-standard and arc-eager approach
[31]. The arc-standard approach asserts the relation be-
tween two elements at the top of the stack. If a relation ex-
ists, it determines the direction and the dependency label of
the arc. If the relation does not exist, it takes one word from
the front of the input buffer onto the stack, denoted as shift
operator. The initial state of the configuration for parsing a
sentence consists of a stack with a root token and a buffer
with all the words in the sentence. The root token means the
top-level head of the sentence. The arc-standard approach
terminates when the stack contains a single token (root to-
ken) and the buffer is empty.

The arc-eager approach, on the other hand, asserts a re-
lation between the word at the top of the stack and the word
at the front of input buffer. If the relation exists, unlike the
arc-standard, for the directed arc, if the word at the top of

the stack is a head, push the word at the front of input buffer
onto the stack without removing the top word of the stack
(right-arc). If the word at the front of input buffer is a head,
then the word at the top of the stack is removed (left-arc).
The arc-eager approach has the initial configuration for
parsing a sentence, which is the empty stack and the input
buffer containing input words. The arc-eager approach is
terminated if it is any configuration with the empty buffer
and, in addition to shift operator, has one more operator, de-
noted as reduce operator which pops the top element from
the stack. For our experiment of transition-based depend-
ency parsing for a Korean sentence, we exploited the arc-
eager approach. Although the arc-eager approach has one
more operation rather than the arc-standard approach, the
reason to use the arc-eager approach is it relatively termi-
nates well than the arc-standard approach for the terminal
condition of the arc-eager approach even if an error behav-
ior was included.

2.2. Korean Dependency Parsing Algorithm

For the Korean dependency parsing, an input sentence is
expressed into the configuration consisting of a stack, a
buffer, and previous actions. The input sentence is set in a
reverse order at the initial configuration and then the parser
starts predicting the correct transition on the feature ex-

Table 1. Korean dependency parsing algorithm.

Algorithm: Korean dependency parsing

Input: a sequence of words in a sentence
Output: a list of governors and dependency relations

stack, buffer ← make_stack(), make_buffer(eojeols)
action ← make_list()
buffer ← reverse(buffer)

pred_head ← make_list(size=len(eojeols) + 1)
pred_rel ← make_list(size=len(eojeols) + 1)

for i in range(len(eojeols) * 2)

if is_empty(buffer) then
end algorithm

next_action, relation ← oracle(stack, buffer, action)
if next_action = 'RIGHT-ARC' then

action.push(next_action)
else if next_action = 'REDUCE' then

action.push(next_action)
pred_head[buffer.top()] ← stack.top()
pred_rel[buffer.top()] ← relation
stack.push(buffer.pop())

else
raise parse_error

end for
return pred_head, pred_rel

Journal of Multimedia Information System VOL. 9, NO. 2, June 2022 (pp. 93-102): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.2.93

95

tracted from the current configuration. In Table 1, the algo-
rithm shows the brief operation of the Korean dependency
parsing.

A Korean sentence follows the head final rule. So, the
head is always on the right side of a sentence. The directed
arc in Korean sentences is left-arc in transition-based ap-
proach. However, there is a right-arc transition between the
root of the sentence and the root token. Direction of the arc
for Korean dependency parsing is right-arc where a buffer
is initialized by pushing a sequence of words in reverse or-
der. Parsing the sequence of words in reverse order has an
advantage to take the right-arc operator of arc operators (i.e.
both left-arc and right-arc) into account, it indicates our de-
pendency parser computes the reduced number of the tran-
sition operation rather than considering both left-arc and
right-arc. In our approach, since the direction of the arc for
parsing a Korean sentence is only the right-arc, the stack
has words, which are asserted as head in dependency pars-
ing, and the buffer has words which are not asserted as head.
The shift operator is not used since the word at the front of
input buffer is always pushed into stack with right-arc op-
erator. Thus, the feasible actions for Korean dependency
parsing in reverse order is reduce operator and right-arc op-
erator.

2.3. Deep Learning Model Architecture

The bidirectional LSTM is used to extract feature to take
into account the context on both the left-to-right and right-
to-left direction. The multi-layer bidirectional LSTM calcu-
lates a context-dependent representation for each input us-
ing a bidirectional LSTM, and then use this representation
as input to another bidirectional LSTM. The multi-layer
structure makes the model to learn more complex features.
The method to deliver the context-dependent representation
to an upper layer can be split into two composition archi-
tectures as shown in Fig. 1. For example, with two-layers
bidirectional LSTM, one composition architecture Fig. 1(a)
is that the context-dependent information from the bottom
layer is delivered in each forward and backward direction
separately, it doesn’t truly take into account the bidirec-
tional representation between layers [6].

We propose another compositional architecture Fig. 1(b).
It combines each context-dependent representation from
left-to-right and right-to-left to make the model extract fea-
ture, which is dependent to bidirectional representation be-
fore moving it to the upper layer in multi-layer bidirectional
LSTM such as Fig. 1(b). In the experiment, we compare
two compositional architectures of multi-layer bidirectional
LSTM without preprocessing proper noun to choose the ap-
propriate compositional architecture for proper noun em-
bedding model of Korean dependency parsing. The chosen
composition architecture of multi-layer bidirectional LSTM

is used to gain features from configuration for our proper
noun embedding in Korean dependency parsing. The cho-
sen composition architecture of multi-layer bidirectional
LSTM is used to gain features from the configuration for
our proper noun embedding in Korean dependency parsing.

Following the arc-eager transition-based approach and
the head final rule in Korean, we set a stack, an input buffer,
and the previous actions as configuration feature. We make
our multi-layer bidirectional LSTM model to read the stack,
the previous actions, and the input buffer initialized by
pushing a sequence of words in reverse order. In our exper-
iment, we make the oracle assert reduce operator and right-
arc operation exclusive of left-arc operator and shift opera-
tor in the arc-eager transition-based approach.
The next action is predicted by input token, stack token, and
previous actions as shown in Fig. 2. Extracting the features,
the bidirectional LSTM is applied to each configuration
(i.e. stack, buffer, and previous actions). As shown in Equa-
tion (1), The forward LSTM ℎ⃗ reads the configura-
tion feature left-to-right, and then the backward LSTM ℎ⃖ reads right-to-left. Each context-dependent repre-
sentation extracted from the forward and backward LSTM
is added to embed each configuration into continuous vec-
tor space. In order to choose the transition for parsing the
Korean sentence, we train our model to minimize the cross

(a)

(b)

Fig. 1. Two models of multi-layer bidirectional LSTM.

Proper Noun Embedding Model for the Korean Dependency Parsing

96

entropy loss between the action obtained by the oracle and
the ground truth action.

III. PROPER NOUN EMBEDDING

Proper noun, represented in continuous vector space,
causes an out-of-vocabulary problem. In particular, for
proper nouns in that the proper noun appearing in test cor-
pus is guaranteed to be incorporated in train corpus. The
proper noun has a property that it is primarily concatenated
with a particle. The particles grammatically and semanti-
cally play an important role in Korean to understanding the
meaning of a sentence. In other words, when interpreting
the meaning of a sentence and the relation of words in a
sentence, the particle concatenated with proper noun is
more significant part than proper noun itself. For identify-
ing the relation of words, the proper noun embedding is not
useful in dealing with the new proper noun unseen in train-
ing but the particles can be reused in such a case that what
role (e.g. subject or object in a sentence) the unseen proper
noun plays on the sentence.

Allowing this point, we propose proper noun representa-
tion method that we call proper noun embedding in our ex-
periment. When proper noun representation is projected
into continuous vector space, we adopt method to retain
particle information and replace proper noun with a special
token as in making the known token vector as preprocessing.
In our experiment, we implement proper noun embedding
in two embedding unit such as syllable and morpheme em-
bedding unit. For each embedding unit, we split a word into
each unit and then each unit vector is added onto word-level.

For example, in the case of syllable embedding unit, we
split a word into syllable unit and then the syllable embed-
ding is added on word-level.

Specifically, two methods of proper noun embedding are
possible. The first one is based on the ‘syllable’ unit and the
second one is based on the ‘morpheme’ unit. In a sentence
“서울에 갔다(went to Seoul)”, there are two types of to-
kenization (e.g. syllable and morpheme token) for the two
words in the sentence “서울에(Seoul-E) 갔다(went)”. In
the syllable-based embedding method, all the syllables in
proper nouns are replaced by a special token in which em-
bedding unit is a syllable. The proper noun ‘서울(Seoul)’ is
further tokenized into ‘서(Seo)’ + ‘울(ul)’, and then the syl-
lables of proper nouns are replaced by a special token such
as ‘♬’. In the same way, ‘갔다(went)’ is tokenized into two
syllables ‘갔(went)’ and ‘다(functional morpheme of verb
ending)’ and then the syllable embedding is added onto
word-level.

As for the morpheme-based embedding, morphological
analyzer is used to extract morpheme tokens. Morphologi-
cal analyzer tokenizes a sentence into a sequence of mor-
phemes. An example of morpheme-based embedding in
which proper noun ‘서울(Seoul)’ itself is replaced by a spe-
cial token such as ‘♪’. In such a morpheme case, embedding
unit is a morpheme. It shows embedding units of a mor-
pheme sequence “서울(Seoul)+에(locative case particle)+
가(go)+았(past particle in verb)+다(functional morpheme
of verb ending)” for a sentence “서울에(Seoul-E) 갔다
(went)”. The first word ‘서울에(Seoul-E)’ is tokenized into
‘서울(Seoul)’ + ‘에(locative case particle)’ and the second
word ‘갔다(went)’ is tokenized into ‘가(go)’ + ‘았(past par-
ticle)’ + ‘다(verb ending)’. The difference of the syllable-
based and morpheme-based method for proper noun em-
bedding is whether to decompose a proper noun into
smaller unit (e.g. syllable unit) or not. In other words, for
any syllable (Korean character), proper noun embedding is
the composition of syllable embedding in the proper noun.
As for morpheme token, the proper noun embedding itself
is projected in a vector continuous space.

We, furthermore, can attach a part-of-speech tag to a
morpheme, and a word is made up of a combination of sev-
eral morphemes with corresponding part-of-speech tags.
The number of parts-of-speech tags combination increases
according to the morphemes in a word and the part-of-
speech vector is generated by adding all the morpheme
parts that make up a word.

IV. EXPERIMENTS AND RESULTS

In this section, we describe our experiments and results

ℎ⃗ = 𝐿𝑆𝑇𝑀 𝐸 𝑥 . ℎ⃖ = 𝐿𝑆𝑇𝑀 𝐸 𝑥 . ℎ = ℎ⃗ + ℎ⃖ . ((1)

Fig. 2. Bi-directional LSTM model architecture for transition-
based dependency parsing.

Journal of Multimedia Information System VOL. 9, NO. 2, June 2022 (pp. 93-102): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.2.93

97

of model with and without the proposed proper noun em-
bedding on dependency parsing task as follows. In Section
4.1, we explain dataset for Korean dependency parsing task.
In order to select the model for proper noun embedding, we
show the results of model without the proposed proper noun
embedding in Section 4.2 and then, in Section 4.3, explore
the performance with the proposed proper noun embedding.
Finally, we compare our ensemble model for proper noun
embedding with the models not handling proper noun as a
special token and Malt parser.

4.1. Dataset

We used the dataset of "2018 Korean Language Infor-
mation Competition: Development and Application of De-
pendency Parsing System" [32]. This dataset was automat-
ically converted from the 21st Sejong treebank corpus for
dependency parsing task. Table 2 shows the size of the da-
taset for train and test (i.e. the number of words and sen-
tences). Sentences are distinguished by line-feed characters
and then the dataset is composed of one or more word in-
formation by using tab character similar to the universal de-
pendency format1 . In other words, the word information
contains several fields which are word index which is inte-
ger starting from one for each new sentence, head word in-
dex, dependency label, and morpheme. For proper noun
embedding model, we divide test data, 5,817 sentences, into
1,045 sentences with proper nouns and 4,772 sentences
without proper nouns.

4.2. Model Selection for Proper Noun Embedding

In order to choose the bidirectional LSTM model rele-
vant for proper noun embedding, without dealing with
proper noun as a special token, we experimented two com-
positional architectures of the bidirectional LSTM in Fig. 1
by changing embedding unit (e.g. word, syllable, and mor-
pheme). In order to determine whether or not part-of-speech
information and dropout [33] is used and the number of bi-
directional LSTM layer, while varying them we experi-
mented not using proper noun embedding. For the model
training, we set the hyper-parameters with batch size of 200
as shown in Table 3. In order to evaluate the performance
of Korean dependency parsing, we measured UAS (Unla-
beled Attachment Score) which finds only the head location

1 https://universaldependencies.org/format.html

and LAS (Labeled Attachment Score) which finds the rela-
tion with head location.

Fig. 3 shows the change in accuracy according to training
iteration. As training progresses, the accuracy increases,
and it shows the highest accuracy when the number of iter-
ations is about 15. After that, the accuracy gradually de-
creased, because the parameters are overfitted to the train-
ing data. Therefore, the performance was measured when
both UAS and LAS accuracy had the largest values.

To choose the model for proper noun embedding model
and which multi-layer structure of bidirectional LSTM to
choose as the best model among two models of Fig. 1, we
compare the results by changing embedding unit (e.g. word,
syllable, and morpheme), and the usage of part-of-speech
information. As shown in Table 4, for the embedding unit,
syllable embedding unit is better than word embedding unit.
Furthermore, in order to compare syllable embedding unit
with morpheme embedding unit, we implement morpheme
embedding unit on the model which is best case in syllable
embedding unit. As a result, we got the best performance
with syllable embedding unit. The resulting performance
with morpheme embedding unit is worse than that of sylla-
ble embedding unit, however, better than that of word em-
bedding unit. Also, it shows marginal variation between
syllable and morpheme embedding unit.

Table 4 also shows the performance variation according
to whether the part of speech is used or not. From the Table

Table 2. The dataset for train and test.

 The number of sentences The number of words

Train data 53,832 602,315

Test data 5,817 57,738

Table 3. Hyper-parameters for model selection.

Hyper-parameter Value
Embedding size 300

Hidden size 300
The number of layers 2

Optimizer Adam
Learning rate 0.001

Fig. 3. Variation curve by training iteration.

Proper Noun Embedding Model for the Korean Dependency Parsing

98

4, using the part-of-speech information has a tendency to
enhance the performance of both UAS and LAS irrespec-
tive of whether the embedding unit is syllable or word. As
for choosing the appropriate multi-layer structure of bidi-
rectional LSTM between two compositional architectures,
Fig. 1(b) shows better performance rather than that of Fig.
1(a). In Table 4, we choose the usage of part of speech in-
formation as ‘yes’ and the composition al architecture of bi-
directional LSTM as Fig. 1(b). For the embedding unit,
since the variation of the performance between syllable and
morpheme embedding unit is slight, we choose both of
them.

In order to choose the usage of dropout and the number
of bidirectional LSTM layers for proper noun embedding
model, varying the number of bidirectional LSTM layers
and applying dropout as shown in Table 5, we experimented
on the model which shows the best performance in Table 4.
We set an embedding unit as syllable, part-of-speech as
‘yes’, and the compositional architecture of bidirectional
LSTM as Fig. 1(b). As shown in Table 5, the performance
of two layers is better than that of one layer or three layers.
Although a regularization such as dropout technique has a
tendency to improve the performance of the model, when
the number of bidirectional LSTM layer is one or two, the
dropout technique makes the model deteriorate. Compared
with it, when the number of layers was three, we found that
using the dropout technique enhances the performance.
However, two layers of bidirectional LSTM are better than
three layers of bidirectional LSTM regardless of the usage
of dropout.

For the proper noun embedding model experiment, we
built 2-layered bidirectional LSTM. Furthermore, we inves-
tigated the errors according to the sentence length, part-of-
speech information, and long dependency errors. For 5,817
sentences, the shortest sentence has two words and the
length of the longest sentence is 50. When the sentences are

classified by dividing the section based on 5 words, the sen-
tences with 16 to 20 words and the sentences with 20 or
more were similar in number. So, 20 or more sentences
were merged into the same section. In the case of errors ac-
cording to the length of the sentence, a relatively small error
rate of about 10% was shown in five words but the error
rate increased as the length increased. Longer sentence has
the possibility to have an error. Analyzing the sentences
with more than 20 words for 3,099 sentences, the accuracy
in sentence level was 53.27%.

We also investigated the types of errors that were incor-
rectly analyzed in relation to parts of speech. With 2,718
errors, we analyzed the part-of-speech between governor
and dependent that incorrectly detected dependency rela-
tion. Analyzing the dependency errors, we had difficulty in
finding three governors: “verb + cordinative_ending”
(VV|EC), “verb + genitive_ending” (VV|ETM), and “com-
mon noun” (NNG). If we compare the actual governor with
the predicted governor, we can see that they are generally
the same part of speech. It is because the relation between
words on the short distance is firstly considered rather than
that between words on the long distance.

4.3. Proper Noun Embedding Model

For proper noun embedding model according to Table 4
and Table 5, we set the number of bidirectional LSTM layer
as two, the compositional architecture of bidirectional
LSTM as Fig. 1(b), and the use of the part of speech infor-
mation as ‘Yes’. For hyper-parameters of proper noun em-
bedding model, we set a batch size of 500.

We measured UAS and LAS as the metrics of proper
noun embedding model. Varying preprocessing and embed-
ding unit (e.g. syllable or morpheme embedding unit), Ta-
ble 6 shows the performance of proper noun embedding
model with the sentences containing proper noun (i.e. 1,045
sentences with proper nouns of 5,817 sentences in test sen-
tences). The preprocessing in Table 6 denotes whether
proper nouns is replaced with a special token or not. For
example, if the preprocessing is true, it denotes that proper
nouns in both train and test corpus are replaced with a spe-
cial token to train and evaluate our model. In other words,

Table 4. Accuracy not dealing with the proper noun as a special token.

Embedding unit Part-of-
speech

Model
ARCHITECTURE UAS LAS

Syllable
Yes

(a) 89.14 86.98
(b) 89.62 87.68

No
(a) 86.33 81.93
(b) 86.84 82.38

Word
Yes

(a) 87.60 85.13
(b) 87.68 85.12

No
(a) 79.50 68.60
(b) 80.40 69.85

Morpheme Yes (b) 89.45 87.38

Table 5. Accuracy with bidirectional LSTM layers and dropout.

The number of layers Dropout UAS LAS

1
1.0 89.21 87.12
0.7 89.13 86.68

2
1.0 89.62 87.68
0.7 89.48 87.38

3
1.0 89.17 86.99
0.7 89.38 87.24

Journal of Multimedia Information System VOL. 9, NO. 2, June 2022 (pp. 93-102): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.2.93

99

replacing the proper nouns with a special token depends on
whether the preprocessing is true or not.

From the result in Table 6, for the test sentences includ-
ing proper nouns, the performance of models which replace
proper noun with a special token is better than that of mod-
els that do not substitute proper noun with a special token
in both syllable and morpheme embedding unit. In contrast
to Table 6, to evaluate the proper noun embedding model
on sentences that do not contain proper nouns, we experi-
ment the proper noun embedding model in test corpus that
does not include proper nouns (i.e. 4,772 sentences of 5,817
sentences in test sentences) varying the preprocessing con-
dition. Table 7 shows the performance of models according
to preprocessing of proper noun with the test corpus that
does not have proper noun, the meaning of preprocessing
and embedding unit is the same from Table 6, The differ-
ence from Table 6, is only that test sentences don’t include
proper nouns. The results of Table 7 show that proper noun
embedding model that do not replace proper noun with a
special token is better than that without substitution.

When evaluating sentences in test corpus with proper
noun, we confirm that after substituting proper noun with a
special token in train and test corpus, syllable embedding
model outperforms the model based on morpheme embed-
ding under the same preprocessing of proper noun embed-
ding model. Besides, when evaluating sentences in test cor-
pus that does not contain proper nouns, we found that it is
not necessary to replace a proper noun with a special token
in train and test corpus. Furthermore, the results of Table 7
show that the morpheme embedding model is better than
syllable embedding model on sentences that do not have
proper nouns. In other words, those results imply that syl-
lable embedding is better than morpheme embedding in

handling sentences with proper noun, but morpheme em-
bedding is better than syllable embedding in handling sen-
tence without proper noun. So, we construct an ensemble
model by integrating both of embedding models in accord-
ance with whether sentences contain proper nouns or not.
Specifically, we use syllable embedding model in sentences
with proper nouns by substituting the proper nouns with a
special token, and morpheme embedding model, which
does not preprocess proper nouns, in sentences that do not
include proper nouns.

Table 8 shows the comparison of our ensemble model
with models (i.e. word, syllable, and morpheme embedding
models) which do not take into account the preprocessing
of proper nouns based on the model with part-of-speech in-
formation and the compositional architecture of bidirec-
tional LSTM such as Fig. 1(b). We also use as baseline tran-
sition-based Malt parser which showed excellent perfor-
mance in CoNLL shared task [34]. To compare our ensem-
ble with the baseline, Malt parser, it is implemented with
both the arc-eager and the arc-standard approach. As shown
in Table 8, for malt parser, the arc-eager approach surpasses
the arc-standard approach. The Malt parser, irrespective of
whether transition-based method is arc-eager or arc-stand-
ard, even outperforms word embedding model based on
neural network in both LAS and UAS. Both syllable em-
bedding and morpheme embedding model are better than
malt parser. Furthermore, the ensemble model shows better
performance than models that do not handle a proper noun
as a special token that used ReLU and dropout in both UAS
and LAS.

V. CONCLUSION

We proposed proper noun embedding model in the Ko-
rean dependency parsing by constructing multi-layer bidi-
rectional LSTM and pre-training proper nouns as special
tokens for an arc-eager transition-based approach. We con-
ducted an experiments for the sentences containing proper

Table 6. Accuracy with sentences including proper noun.

Preprocessing Embedding unit UAS LAS

True
Syllable 87.74 85.96

Morpheme 87.42 85.70

False
Syllable 87.44 85.83

Morpheme 87.15 85.35

Table 7. Accuracy with sentences not including proper noun.

Preprocessing Embedding unit UAS LAS

True
Syllable 90.27 88.10

Morpheme 90.58 88.44

False
Syllable 90.40 88.35

Morpheme 90.72 88.58

Table 8. The comparison of performance.

Model UAS LAS

Word embedding model 87.68 85.12

Syllable embedding model 89.62 87.68

Morpheme embedding model 89.45 87.38

Ensemble model(our proposed model) 89.93 87.88

Malt parser: arc-eager 88.24 85.71

Malt parser: arc-standard 88.15 85.58

Lee et al.[21] 89.56 87.35

Proper Noun Embedding Model for the Korean Dependency Parsing

100

nouns and the sentences not containing proper nouns. As a
result, the syllable-based neural network with proper noun
preprocessing shows better performance than the mor-
pheme-based one in handling the sentences with proper
nouns, and morpheme embedding-based neural network
without proper noun preprocessing shows better perfor-
mance than the syllable-based one in handling the sentences
not including the proper nouns. When we compared with
Malt parser, arc-eager approach is better than arc-standard
approach in Malt parser. Comparing the Malt parser with
the models not handling proper nouns as a special token,
Malt parser outperforms word embedding model based on
neural network, but deteriorate than both syllable embed-
ding model and morpheme embedding model. Finally, our
ensemble model, integrating syllable embedding and mor-
pheme embedding according to existence of proper noun,
shows better performance than Malt parser. The result
shows that the performance improves by 1.69%p for UAS
and 2.17%p for LAS than Malt parser’s arc-eager approach
using the same transition-based method in proper noun em-
bedding model.

ACKNOWLEDGEMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIT) (NRF-2021R1F1A1061433). This paper is
an extended from the conference paper [31] with further ex-
periments in the first author’s MS thesis [35].

REFERENCES

[1] J. Nivre, "Algorithms for deterministic incremental de-
pendency parsing," Computational Linguistics, vol. 34,
no. 4, pp. 513-553, Dec. 2007.

[2] J. Nivre, "Non-projective dependency parsing in ex-
pected linear time," in Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, Suntec, Singapore, Aug.
2009, pp. 351-359, 2009.

[3] T. Kudo and J. Richardson, "Sentence piece: A simple
and language independent subword tokenizer and deto-
kenizer for neural text processing," in Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Brus-
sels, Belgium, Nov. 2018, pp. 66-71.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient
Estimation of Word Representations in Vector Space,"
https://arxiv.org/abs/1301.3781.

[5] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J.
Dean, "Distributed representations of words and phrases

and their compositionality," in Advances in Neural In-
formation Processing Systems, USA, Dec. 2013, pp.
3111-3119.

[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding," in Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Minneapolis, Minnesota, Jun. 2019, pp.
4171-4186.

[7] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut, "ALBERT: A Lite BERT for Self-Super-
vised Learning of Language Representations," https://
arxiv.org/abs/1909.11942.

[8] A. Radford, K. Narasimhan, T. Salimans, and I.
Sutskever, "Improving language understanding by gen-
erative pre-training," 2018.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, "Language models are unsupervised mul-
titask learners," OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

[10] T. Brown, et al., "Language models are few-shot learn-
ers," in Advances in Neural Information Processing
systems, Dec. 2020, pp. 1877-1901.

[11] Z. Hu, T. Chen, K. Chang, and Y. Sun, "Few-shot rep-
resentation learning for out-of-vocabulary words," in
Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, Florence, Italy,
Jul. 2019, pp. 4102-4112.

[12] T. Lee and S. Kang, "Automatic text summarization
based on selective OOV copy mechanism with BERT
embedding," Journal of KIISE, vol. 47, no. 1, pp. 36-
44, Jan. 2020.

[13] D. Weiss, C. Alberti, M. Collins, and S. Petrov, "Struc-
tured training for neural network transition-based
parsing," in Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing, Beijing, China, Jul. 2015, pp.
323-333.

[14] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta,
and K. Ganchev, et al., "Globally normalized transi-
tion-based neural networks," in Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics, Berlin, Germany, Aug. 2016. pp.
2442-2452.

[15] H. Wang, H. Zhao, and Z. Zhang, "A transition-based
system for universal dependency parsing," in Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
Vancouver, Canada, Aug. 2017, pp. 191-197.

[16] W. Wang and B. Chang, "Graph-based dependency
parsing with bidirectional LSTM," in Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics, Berlin, Germany, Aug. 2016,

Journal of Multimedia Information System VOL. 9, NO. 2, June 2022 (pp. 93-102): ISSN 2383-7632 (Online)
https://doi.org/10.33851/JMIS.2022.9.2.93

101

pp. 2306-2315.
[17] Z. Zhang, H. Zhao, and L. Qin, "Probabilistic graph-

based dependency parsing with convolutional neural
network," in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, Ber-
lin, Germany, Aug. 2016. pp. 1382-1392.

[18] D. Chen and C. D. Manning, "A fast and accurate de-
pendency parser using neural networks," in Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, Oct.
2014, pp. 740-750.

[19] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N.
A. Smith, "Transition-based dependency parsing with
stack long short-term memory," in Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing, Beijing,
China, Jul. 2015, pp. 334-343.

[20] M. Ballesteros, C. Dyer, and N. A. Smith, "Improved
transition-based parsing by modeling characters in-
stead of words with LSTMs," in Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, Lisbon, Portugal, Sep. 2015,
pp. 349-359.

[21] C. Lee, J. Kim, and J. Kim, "Korean dependency pars-
ing using deep learning," in Proceedings of the 26th
Annual Conference on Human and Cognitive Lan-
guage Technology, 2014, pp. 87-91.

[22] S. Hochreiter and J. Schmidhuber, "Long short-term
memory," Neural Computation, vol. 9, no. 8, pp. 1735-
1780, Nov. 1997.

[23] E. Kiperwasser and Y. Goldberg, "Simple and accurate
dependency parsing using bidirectional LSTM feature
representations," in Transactions of the Association for
Computational Linguistics, vol. 4, pp. 313-327. 2016.

[24] J. Li and J. H. Lee, "Korean transition-based depend-
ency parsing with recurrent neural network," KIISE
Transactions on Computing Practices, vol. 21, no. 8,
pp. 567-571, 2015.

[25] S. H. Na, K. Kim, and Y. K. Kim, "Stack LSTMs for
transition-based Korean dependency parsing," in Pro-
ceedings of the Korea Computer Congress, 2016, pp.
732-734.

[26] Z. Zhang, S. Liu, M. Li, M. Zhou, and E. Chen, "Stack-
based multi-layer attention for transition-based de

pendency parsing," in Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, Sep. 2017, pp.
1677-1682.

[27] J. W. Min,and S. H. Na, "SyntaxNet models using tran-
sition based recurrent unit for Korean dependency
parsing," in Proceedings of the Korea Computer Con-
gress’17, 2017, pp. 602-604.

[28] C. Park and C. Lee, "Korean dependency parsing by
using pointer networks," Journal of Korean Institute of
Information Scientists and Engineers, vol. 44, no. 8,
pp. 822-831, 2017.

[29] Z. Li, J. Cai, S. He, and H. Zhao, "Seq2seq dependency
parsing," in Proceedings of the 27th International
Conference on Computational Linguistics, Santa Fe,
New Mexico, USA, Aug. 2018, pp. 3203-3214.

[30] J. H. Lim, Y. C. Yoon, Y. J. Bae, S. J. Lim, H. K. Kim,
and K. C. Lee, "Korean dependency parsing model
based on transition system using head-final con-
straint," in Proceedings of the 26th Annual Conference
on Human and Cognitive Language Technology, 2014,
pp. 81-86.

[31] G. H. Nam, H. Lee, and S. Kang, "Korean dependency
parsing with proper noun encodin," in Proceedings of
the 2019 4th International Conference on Intelligent
Information Technology, Da Nang, Viet Nam, Feb.
2019, pp. 113-117.

[32] C. Lee, J Bae, C. Park, H. Hong, and S. Lee, "Korean
information processing system competition: Korean
dependency parsing," in Proceedings of the 30th Con-
ference of Human and Language Technology, 2018,
pp. 675-677.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, "Dropout: A simple way to pre-
vent neural networks from overfitting," The Journal of
Machine Learning Research, vol. 15, no. 56, pp. 1929-
1958, 2014.

[34] J. Nivre, J. Hall, and J. Nilsson, "MaltParser: A data-
driven parser-generator for dependency parsing," in
Proceedings of the Fifth International Conference on
Language Resources and Evaluation, Genoa, Italy,
May 2016, pp. 2216-2219.

[35] G. H. Nam, "Transition-based deep learning approach
to Korean dependency parsing," M.S. thesis, Kookmin
University, Seoul, Korea, 2018.

Proper Noun Embedding Model for the Korean Dependency Parsing

102

AUTHORS

Gyu-Hyeon Nam received his B.S. and
M.S. degrees in the Department of Com-
puter Engineering from Kookmin Univer-
sity, Korea, in 2017 and 2019, respectively.
Since 2019, He has been working at Deep-
Brain AI, Korea. His research interests in-
clude speech synthesis and natural language
processing.

Hyun-Young Lee received his B.S. degree
and M.E. degree in Computer Science from
Kookmin University in 2016 and 2019 re-
spectively. He received Ph.D. degree in
Computer Science from Kookmin Univer-
sity in 2022. Currently, he is working for
KT Corporation. His research interests in-
clude natural language processing, machine
learning, deep learning, recommendation

system, and information retrieval.

Seung-Shik Kang received his B.S. degree
in Computer Science from Seoul National
University in 1986, and M.S. and PhD de-
grees in Computer Science from the same
University, in 1988 and 1993, respectively.
He worked for Hansung university as an as-
sociate professor from 1994 to 2001. Cur-
rently, he is working for Kookmin Univer-
sity as a full professor. His research interests

include natural language processing, information retrieval, text
mining, big data processing, and machine learning.

